TITLE OF PAPERS AND SCHEME OF STUDY & EXAMINATION FOR BCA (Bachelor of Computer Application) w.e.f. 2010-2011

Computer Application) w.e.f. 2010-2011								
Sem No.	Paper No.	Title of the paper	Hrs/W k	Marks		IA	Total marks	
				Max	Mi n	IA	Max	Min
Ι	BCA 101	Mathematics – I	4	80	32	20	100	40
	(A)							
	BCA 101	Accounting & Financial Management	4	80	32	20	100	40
	(B)	-I						
	BCA 102	Kannada / Hindi / Urdu	4	80	32	20	100	40
	BCA 103	Basic Electricals & Electronics	4	80	32	20	100	40
	BCA 104	Computer Concepts & C-programming	4	80	32	20	100	40
	BCA 105	Logic Design	6	80	32	20	100	40
	BCA 106	Computer Lab 1.1 (C programming)	6	80	32	20	100	40
	BCA 107	Computer Lab 1.2 (Basic Electricals & Electronics & Logic design)	6	80	32	20	100	40
	BCA 108	Indian Constitution	4	100	35	-	100	35
II	BCA 201	Mathematics – II	4	80	32	20	100	40
	(A)	Transfirmed II			32		100	.0
	BCA 201	Accounting & Financial Management	4	80	32	20	100	40
	(B)	- II						
	BCA 202	English	4	80	32	20	100	40
	BCA 203	Numerical and Statistical Methods	4	80	32	20	100	40
	BCA 204	Data Structures Using C	4	80	32	20	100	40
	BCA 205	Computer Organization &	4	80	32	20	100	40
		Architecture						
	BCA 206	Computer Lab 2.1 (Data Structure)	6	80	32	20	100	40
	BCA 207	Computer Lab 2.2 (NSM &	6	80	32	20	100	40
		Accountancy)						
III	BCA 301	Operating System	4	80	32	20	100	40
	BCA 302	OOPS Using C++	4	80	32	20	100	40
	BCA 303	Discrete mathematical Structures	4	80	32	20	100	40
	BCA 304	Visual Programming and multimedia	4	80	32	20	100	40
	BCA 305	Data Communications	4	80	32	20	100	40
	BCA 306	Computer Lab 3.1 (C++)	6	80	32	20	100	40
	BCA 307	Computer Lab 3.2 (Programs VB and	6	80	32	20	100	40
		Linux)						

Note: Duration of Examination of each Theory / practicals shall be of 3 (Three) hours duration.

Sem No.	Paper No.	Title of the paper	Hrs/W k	Marks		IA	Total marks	
				Ma x	Min	IA	Max	Min
IV	BCA 401	Design & Analysis of	4	80	32	20	100	40
		Algorithm						
	BCA 402	System Analysis & Design	4	80	32	20	100	40
	BCA 403	System Programming	4	80	32	20	100	40
	BCA 404	Computer Graphics	4	80	32	20	100	40
	BCA 405	Microprocessors	4	80	32	20	100	40
	BCA 406	Computer lab 4.1 (DAA and CG)	6	80	32	20	100	40
	BCA 407	Computer lab 4.2 (Microprocessor and SP)	6	80	32	20	100	40
	BCA 408	Communicative English	4	100	35	-	100	35
V	BCA 501	Computer Networks	4	80	32	20	100	40
	BCA 502	Internet Programming	4	80	32	20	100	40
	BCA 503	Data Base Management System	4	80	32	20	100	40
	BCA 504	E- Commerce and Web Designing	4	80	32	20	100	40
	BCA 505	Operations Research	4	80	32	20	100	40
	BCA 506	Computer Lab 5.1 (JAVA and HTML)	6	80	32	20	100	40
	BCA 507	Computer Lab 5.2 (DBMS)	6	80	32	20	100	40
VI	BCA 601	Mobile Computing	4	80	32	20	100	40
	BCA 602	Software Engineering	4	80	32	20	100	40
	BCA 603	Introduction to UNIX	4	80	32	20	100	40
	BCA 604	Object Oriented System Design	4	80	32	20	100	40
	BCA 605	VB Dot Net Technology	4	80	32	20	100	40
		Project work						
	BCA 606	Project Report:	12	200	80		200]	120
	(A)	Viva – voce :		100			100	
	BCA 606							
	(B)							
	GRAND TOTAL MARKS						45	00

Note: Duration of Examination of each Theory / Practicals shall be 3 (Three) hours duration.

BCA - FIRST Year Semester

B.C.A 101 (A): MATHEMATICS - I (for Commerce students only)

Total: 50 Hrs

ALGEBRA: Theory of indices and Logarithms with standard problems. Progressions: A.P G.P and H.P, Mathematical Induction, Theory of equations: 'Solution of Quadratic, Cubic and Biquadratic equations, Cardon's Method for Cubic equation. Permutations and combinations. Binomial Theorem: Problems of Binomial. Partial Fractions. Elements of Number Theory and Congruence's.

(15 Hrs)

ANALYTICAL GEOMETRY: Co-ordinates, distance and section formula straight line and pair of lines. (10 Hrs)

CALCULUS: Limits, Continuity and differentiation, Standard forms

(10 Hrs)

TRIGNOMETRY: Measurements of angles, Trigonometric functions of standard angles. Compound angles, Multiple and Sub multiple angles. Transformation formula. Heights and Distances. Graphs of Trigonometric functions. Relation between sides and angles of a triangle, solution of triangles. (15 Hrs)

REFERENCES

- 1. H.S Hall and S.R Knight, Higher Algebra, Surject publications (1988).
- 2. S.L. Loney, Co-ordinate Geometry: The elements of co-ordinate Geometry
- 3. Shanti Narayan, Differential Calculus S. Chand and Company, Ramanagar, New Delhi-55(1974).
- 4. S.L. Loney. Trignometry, Surject Publications, Kamal Nagar Delhi, (1989).

B.C.A 101 (B): ACCOUNTING & FINANCIAL MANAGEMENT - I

Total: 50 Hrs

Introduction: History and Development of Accounting - Meaning, Objectives and functions of Accounting - Book - keeping V *Is* Accounting - Users of accounting data systems of book - keeping and accounting - branches of accounting - advantages and limitations of accounting.

Accounting Concepts and conventions: Meaning, need and classification, Accounting standards meaning, need and classification of Indian accounting standards. Accounting principles V *Is* Accounting standards.

Financial Accounting Process: Classification of accounting' transactions and accounts, rules of debit and credit as per Double Entry System. Journalisation and Ledger posting.

Preparation of different subsidiary books: Purchase Day Book Sales Day Book, Purchase Returns Day Book, Sales Returns Day Book, Cash Book. . .

Bank Reconciliation Statement: Meaning, Causes for difference - Advantages - . Preparation of Bank Reconciliation Statements. ...

Accounting for Bill of Exchange: Meaning, Need, Definition, Parties to Bill of Exchange, Types. of Bills.

Accounts Procedure: Honour of the Bill, Dishonour of the Bill, Endorsement, Discounting, Renewal, Bills for collection, Retirement of the Bill, Accommodation Bills, . Bill Receivable Book and Payable Book.

Preparation of Trial Balance: Rectification of errors and Journal Proper.

Preparation of Final Accounts: Meaning, need and classification, Preparation of Manufacturing, Trading, Profit and loss account and Balance - Sheet of sale- traders and partnership firms. **Text Book**

I) S.Ramesh, B.S. Chandrashekar, A Text Book of Accountancy.

- 1. V.A. Patil & J.S. Korihalli, Book Keeping and Accounting, (R. Chand and Co. Delhi)
- 2. R.S. Singhal, Principles of Accountancy, (Nageen Prakash pyt. Ltd. Meerut)
- 3. M.B. Kadkol, Book Keeping and Accountancy, (Renuka Prakashari, Hubli)
- 4. Vithal, Sharma: Accounting for Management. Macmillan publishers, Mumbai
- 5. B.S. Raman, Accountancy, (United Publishers. Mangalon:)
- 6. Tulsian, Accounting and Financial Management I: Financial Accounting Pearson Education

BCA 102: ಮೊದಲನೆಯ ಸೆಮಿಸ್ಟರ್

ಅವಶ್ಯಕ ಕನ್ನಡ

(ವಾರಕ್ಕೆ 5 ಗಂಟೆಗಳ ಪಾಠ, 3 ಗಂಟೆಗಳ ಪರೀಕೆ,್ಷ ಅಂಕಗಳು 80 ಅಂತರಿಕ ಮೌಲ್ಯಮಾಪನ ಅಂಕಗಳು :20)

'ಅ' ಭಾಗ

1) ಹೊಸಗನ್ನಡ ಕವಿತೆಗಳ ಸಂಗ್ರಹ

ಅಂಕಗಳು - 40

ಸಂಪಾದಕರು : ಡಾ. ಎಮ್. ಎಸ್. ಮೇತ್ರಿ

'ಬ' ಭಾಗ

2) ದ್ರೌಪದಿ (ಕಾದಂಬರಿ)

ಅಂಕಗಳು - **40**

ಲೇಖಕರು : ಡಾ.ಎಸ್. ವಿ. ಪ್ರಭಾವತಿ

ನಂ. 301, ಪಲ್ಲವ ಚೆಳಿಸ್ ಜಯನಗರ 6ನೇ ಬ್ಲಾಕ್

ಬೆಂಗಳೂರು-70

3) ಆಂತರಿಕ ಲಘು ಪರೀಕ್ಷೆ

ಅಂಕಗಳು – 20

BCA 102: I Semester Basic Hindi

Paper – I Maximum Marks – 100 (80+20) (80 for theory & 20marks for two Internal assessment tests of 10 marks each)

Teaching hour 5: hrs per week.

Prescribed Syllabus:

- 1. Collection of prose 40 marks
- 2. Grammar 20 marks
- 3. General Essays 10 marks
- 4. Objective type -10 marks
- 1. aÉkrÉ xÉÇaÉëWû :xÉÉÌWûirÉ kÉÉUÉ (aɱ xÉÇaÉëWû)

xÉÇ.QûÉ. xÉÑUãvÉ oÉÉoĚU QûÉ. vÉÇMüU øUÉuÉ ÌSbÉã

AkrÉrÉIÉ Mãü ÍsÉL ÌIÉCqIÉÍsÉÎZÉIÉ sÉãZÉMÜ

1) mÉëãqÉcÉÇS 2)eÉrÉvÉÇMüU mÉëxÉÉU 3)UÉeÉåÇSì mÉëxÉÉS 4)eÉælÉãÇSì MÑüqÉÉU 5) qÉWûÉSåluÉ uÉqÉÉï 6) qÉÉåWûlÉ UÉMåüvÉ 7)qɳÉÔ pÉÇQûÉUÏ

2. urÉÉMüUhÉ

vÉoSpÉåS - ÌuÉMüÉUÏ, AÌuÉMüÉUÏ MüÉ xÉÉgÉÉIrÉ mÉËUcÉrÉ

xÉÇelrÉÉ - mÉUÏPÉÉVÉÉ LuÉÇ mÉëMüÉU xÉuÉïlÉÉqÉ - mÉUÏPÉÉWÉÉ LuÉÇ mÉëMüÉU ìuÉVÉÇWÉhÉ - mÉËUPÉÉWÉÉ LuÉÇ mÉëMüÉU

l¢ürÉÉ - mÉËUpÉÉwÉÉ LuÉÇ mÉëMüÉU

- 3. xÉÉgÉÉIrÉ ÌIÉoÉCKÉ
- 4. AÉoeÉÎYOûuÉ rÉÉ oÉWÒûÌuÉMüÎsmÉrÉ mÉëvlÉ (1,2 mÉU AÉkÉÉËUiÉ)

mÉëvlÉmÉì§ÉMüÉ lÉqÉÔIÉÉ iÉjÉÉ AÇMüÉã MüÉ ÌuÉuÉUhÉ

- 1. xÉmÉëxÉÇaÉ urÉÉZrÉÉiqÉMü mÉëvlÉ (2 out of 4) aɱ xÉÇaÉëWû xÉã 10X2=20
- xÉÍqɤÉÉiqÉMü mÉëvlÉ (2 out of 4) aɱ xÉÇaÉëWû xÉã
 sÉbÉÑ mÉëvlÉ (3 out of 6) urÉÉMüUhÉ ÍxÉkSÉÇiÉ mÉU
 uÉÉYrÉ xÉÑkÉÉËUL mÉëvlÉ (5 out of 8) urÉÉMüUhÉ mÉU

 10X2=20
 5X3=15
 4. uÉÉYrÉ xÉÑkÉÉËUL mÉëvlÉ (5 out of 8) urÉÉMüUhÉ mÉU
 1X5=5
- 5. xÉÉgÉÉIrÉ ÌIÉoÉÇKÉ (1 out of 4) 10X1=10
- 6. LMü uÉÉYrÉ E ÉÜ mÉëvlÉ rÉÉ oÉWÒû luÉMü lsmÉrÉ mÉëvlÉ (Total 10) 1X10=10 aɱ xÉÇaÉëWû iÉjÉÉ urÉÉMüUhÉ mÉU AÉKÉÉËUIÉ

xÉWûÉrÉMü aÉëÇjÉ xÉÔÍcÉ -

- 1. ÌWûÇISÏ mÉërÉÉåaÉ UÉqÉcÉÇSì uÉqÉÉï sÉÉåMü pÉÉUiÉÏ mÉëMüÉvÉIÉ, 15 L qÉWûÉiqÉÉ aÉÉÇkÉÏ qÉÉaÉï LsÉWûÉoÉÉS
- z. urÉÉuÉWűÉËUMü ÌWûÇISÏ urÉÉMüUhÉ AIÉÑuÉÉS iÉjÉÉ UcÉIÉÉ, QûÉ.LcÉ.
 mÉUqÉãvÉuÉUIÉ UÉkÉÉM×üwhÉ mÉëMüÉvÉIÉ
 2/38 AÇxÉÉUÏ qÉÉaÉï, SËUrÉÉaÉÇeÉ,
 ÌSssÉÏ 110002

B.C.A 103: COMPUTER CONCEPTS AND C - PROGRAMMING

Total - 50 Hrs

1. COMPUTER CONCEPTS

1.1 Introduction to Computer

System logical organization, Von Neuman concept of computers stem, Block diagram of computer system, Central Processing Unit (CPU), ALU, CU, Main memory, Input /Output unit. Brief history of computer generations. (3 Hrs)

- **1.2 Hardware**: Input devices Keyboard, Mouse, Lighten, Joystick, Scanner, Digitizer. Output devices Various types of printers, Plotters, Secondary storage devices Floppy disk, Hard disk, CD-ROM, Optical disk. (2 Hrs)
- **1.3 Software**: System software, Operating System, Application Software, Machine Level Language, Assembly language, Higher level programming languages, Assemblers, Compilers and editors. Merits and demerits of all the languages.

(3 Hrs)

1.4 Computer Programming: Basic Programming concepts - Algorthm, Flowcharts, Modular Programming and structured programming. (2 Hrs)

2. 'C' PROGRAMMING

2.1 Problem solving using Computers, Concept of flowcharts and algorithms (5 Hrs)

2.2 Overview of C

Introduction, Importance of 'C', Sample .'C' Programs, Basic structure of 'C' programs, Programming style, Executing a 'C' Program. (2 Hrs)

2.3 Constants, Variables and Data types:

'C' Tokens, keywords, and identifiers, constants, variables, datatypes, declaration of variables, assigning values to variables, defining symbolic constants

(2 Hrs)

2.4 Operators and expression:

Arithmetic operators, Relational operators, Logical operators, Assignment operators, increment and decrement operators, conditional operators, bitwise operators, special operators, some computational problems, type conversion in expressions, operator precedence and associativity. Mathematical functions.

(4 Hrs)

2.5 Managing input and output operators:

Input and Output statements, reading a character, writing characters, formatted input, formatted output statements. (2 Hrs)

2.6 Decision making, Branching and looping:

Decision making with IF statement, simple IF statement, The IF-ELSE statement, nesting of IF .. ELSE statements, The ELSE -IF ladder, The switch statement, The ?: operator, The GOTO statement, The WHILE statement, The DO statement, The FOR statement, jumps in loops.

(5 Hrs)

2.7 Arrays:

One dimensional arrays, Two-dimensional arrays, initializing two-dimensional array, Multidimensional arrays. (4 Hrs)

2.8 Handling of character strings:

Declaring and initializing string variables, reading string from terminal, writing string to screen, arithmetic operations on characters, putting strings together. Comparison of two strings,

(4 hrs)

2.9 User defined functions:

Need for user-defined functions, a multi-functional program, the form of 'C' function, Return values and their types, calling a function, category of functions No arguments and no return values, arguments but no return values, arguments with return values, handling of non-integer functions, nesting of functions, recursion, functions with arrays.

(4 Hrs)

2.10 Structure and union:

Structure definition, giving values to members, structure initialization; comparison of structure variables, array as structure, array within structure, union.

(5 Hrs)

2.11 Pointers:

Understanding pointers, accessing the address of variables, declaring and initializing pointers, accessing a variable through its pointer. (3 Hrs)

Text books:

- 1. E.Balaguruswamy. : Programming in ANSI C" Tata Me Graw-Hill (1998)
- 2. Kamthane, Programming with ANSI and Turbo C. Pearson Education 2003

References:

- 1. V.Rajaraman.: "Fundamentals of Computers", PHI (EEE) (1999)
- 2. V.Rajaraman.: "Programming in C", PHI (EEE) (2000)
- 3. S.ByronGottfried.: "Programming with C", Tata McGraw-Hill(2000)
- 4. Yashawant Kanetkar: "Let us C"
- 5. Rajesh Hongal: "Computer Concepts & C language"
- 6. Brain verminghan & Dennis M. Ritchie "ANSI C Programming" (PHI)
- 7. Ramkumar & Rakesh Aggarwal "ANSI C Programming" Tata McGraw Hill
- 8. Kernighan, C Programming Language ANSI C Version. Pearson Education.
- 9. Venkateshmurthy, Programming Techniques through C. Pearson Education.

B.C.A. 104 : LOGIC DESIGN

DIGITAL LOGIC:

Introduction Digital computers and digital systems, binary numbers, Binary addition and Subtraction, Unsigned Binary numbers, 1's compliments, 2's compliments, (r-1)s compliment, (r)s compliments, Number base conversion, Octal and Hexadecimal number system, Fractional Numbers, Binary coded decimal Numbers. (10 hrs)

BOOLEAN ALGEBRA:

Definition of Boolean Algebra, basic Laws and Theorems and properties of Boolean algebra, Venn diagram, Boolean functions, implementation of Boolean functions with gates, Simplifications of Boolean functions. (10 hrs)

LOGIC GATES:

Logic gates, Universal Logic Gates, Extension to multiple inputs, Positive & Negative logic, Half adder & full adder. (7 hrs)

DIGITAL IC FAMILIES:

Diode transistor logic, transistor transistor logic, Emitter coupled logic, Metal oxides Semi Conductor & Complementary metal oxides Semi Conductor (4 hrs)

FLIP FLOPS:

SR - Flip Flop, D- Flip flop, JK-flip flop, T-flip flop, Edge triggered flip flop, master slave flip flop. (6 hrs)

COUNTERS:

Asynchronous counters (Ripple counter), Binary ripple counter, BCD ripple counter. Synchronous counters – Binary counter, Binary up-down counter, timing sequence. (8 hrs)

MEMORY UNIT:

Basic concepts, Semi conductor RAM memories, ROM (Read only memory), speed size & cost. (5 hrs)

TEXT BOOK:

- 1. Morris Mano M., Digital logic and Computer Design, PHI.
- 2. Morris Mano M., Computer system Architecture, PHI

REFERENCE BOOKS:

- 1. An Introduction to Digital Computer Design, V. Rajaraman, T.Radhakrishnan, PHI.
- 2. Fundamentals of Digital Logic with Verilog Design, Stephen Brown, Zvonko Vranesic, TMH, 2006.
- 3. Fundamentals of Logic Design, Charles H. Roth, Jr. 5th Edition, Thomson, 2004
- 4. Digital Principles and Appliances, Donals Leach, Albert Paul Malvino & Goutam Saha, 6th Edition, TMH, 2006.

- 5. Computer Organization, Carl Hamcher, Zvonoko Vranesic, Safwat Zaky, 5th Edition, TMH, 2002.
- 6. Electrical & Electronics & Computer Engineering , K.A. Krishnamurthy, M.R.Raghuveer New age International Limited Publication.

B.C.A 105: BASIC ELECTRICALS & ELECTRONICS

Total: 50 hrs

- **1. Network Theorems :** Introduction Kirchoff's law :Loop and nood method of analysis, Nortons Theorem, Superposition Theorem Thevenin's Theorems maximum Power Transfer Theorem Reciprocity Theorem Delta / Star and Star / Delta Transformation. **(6 Hrs)**
- **2. A.C.Fundamentals :** Alternating voltage and current Sinusoidal alternating voltage and current Generation of altering voltages and currents Equation of alternating voltage and current important a.c. terminology and their Important relations values of alternating voltage and current Peak value Average value Average value of sinusoidal current R.M.S. or effective value R.M.S value of sinusoidal current importance of R.M.S. value of sinusoidal current Importance of R.M.S. values Form factor and Peak factor Phase , Phase difference Representation of alternating voltages and currents Phasor representation of sinusoidal, Phsor diagram of sine waves of same frequency Addition of alternating quantities, Phasor diagrams using r.m.s. values.

(6 Hrs)

3. R-L series circuit – Impedance triangle – Power factor – True power and Reactive power – Significance of power factor R-C series circuit – R-L-C series circuit – R-L-C series circuit.

(4 Hrs)

- **4. Polyphase Circuits:** Polyphase system Reasons for use of 3-phase system Elementary 3-phase alternator Some Concepts Interconnection of three phases Star or Y-connection Voltage and Current in balanced Y-connection –How to apply load? Delta or Mesh connection Voltages and currents in balanced delta connection Advantages of star and delta connected system.
 - (6 Hrs)
- **5. Semiconducting Devices :** Atomic Structure, The Electron, Energy Band Theory of Crystals, Semiconductors, Diode Characteristics, Diode Forward Resistance, The Halfwave Diode Rectifier, The Full Wave Diode Rectifier, Full Wave Bridge Rectifier, Ripple, Ripple Factor, Shunt Capacitor Filter, Voltage Regulation, Zener Diode, Zener Diode Voltage Regulator. **(8 Hrs)**
- **6. Operational Amplifiers :** The Ideal Operational Amplifier, Saturable Property of an OPAMP, The Comparator, The Inverting OPAMP Circuit, The non Inverting OPAMP Circuit, OPAMP Characteristics, OPAMP Applications. (7Hrs)
- **7. Sinusoidul, Square Wave Oscillators :** Working of RC wien Network oscillator, crystal oscillator, astable multi vibrator using op and amp. (4 Hrs)
- **8. IC Timer Circuits :** The IC-555 timer, 555 as a mountable multivibrator, 555 timer applications. (2 Hrs)
- **9. Communication System :** Basic Block diagram of communication system. Need for modulation, definition of amplitude modulation and frequency modulation. Expression for amplitude modulated wave and frequency modulated wave, comparison between AM & Fm Modulating and demodulating circuits. (7 Hrs)

Text Book:

- 1. V.K.Mehta, Basic Electrical Engineering.
- 2. Hughes: Hughes Electrical & Electronics Technology, 8/e. Pearson Education
- 3. Storey: Electronics: A Systems Approach, 2/e Pearson Education

- 1. K.R.krishnamurthy, M.R.Raghuveer: Electrical and Electronics Engineering for Scientists and Engineers, NEW AGE INTERNATIONAL (P) LTS, Bengaluru.
- 2. V.N. Mittle, Basic Electrical Engineering Tata McGraw Hill publishing Com.Ltd.
- 3. H.Cotton, Advanced Electrical Technology, Pitman Publication.
- 4. K.R.krishnamurthy, M.R.Raghuveer: Electrical and Electronics Engineering for Scientists and Engineers, NEW AGE INTERNATIONAL (P) LTD. Bangalore
- 5. Sedra / Smith: Microelectronic circuits, Oxfprd University press (1998)
- 6. A.J.Die fender: Principles of Electronic Instrumentation, for B.H. Holtan, Saunders College publication (1998)
- 7. Allen Mottershead: Electronic Devices and circuits: PHI Publications (1997)
- 8. Kennedy and Davie : Electronic Communication systems, TMH Edition IV (1998)
- 9. Driscoll and Cognation: Op Amplifiers and liman integrated circuits, PHI Publications. (1990) Horwitz: Art of Electronics (1990).
- 10. Spencer: Introduction to Electronic Circuit Design Pearson Education 2003
- 11. Witte: Electronic Test Instruments, 2/e. Pearson Education 2004
- 12. Tomasi: Electronic Communications Systems, 5/e Pearson Education 2004

B.C.A. 106: COMPUTER LAB - 1.1 (Based on BCA - 104)

Sample Programs:

- 1) Write a Program to find the root of the given quadratic equation using switch case.
- 2) Write a C Program to generate and print first N FIBONACCI numbers.
- 3) Write a Program to find the OCD and LCM of two integer numbers
- 4) Write a C Program that reverse a given integer number and check whether the number is palindrome or not.
- 5) Write a Program to find whether a given number is prime number or not
- 6) Write a C Program to input numbers and to find mean variance and standard deviation.
- 7) Write a C Program to read two matrices and perform addition and subtractions of two matrices.
- 8) Write a C Program to read a string and check whether it is palindrome or not.
- 9) Write a Program to find the factorial of a number using function
- 10) Write a C Program to find if a character is alphabetic or numeric or special character.
- 11) Write a C Program to compute the sum of even numbers and the sum of odd numbers using a function.
- 12) Write a C Program to find trace and normal of a square matrix using functions.
- 13) Write a C PrograIII t~ accept a sentence and convert all lowercase characters to uppercase and vice -versa. .
- 14) Write a Program to accept different goods with the number price and date of purchase and display them.
- 15) Write a C Program to find the length of a string without using the built in function.

B.C.A. 107 : COMPUTER LAB – 1.2 (Based on BCA 103)

- 1. Capacity of condenser by charging and discharging.
- 2. Figure of merit & sensitivity of mirror galvanometer
- 3. Impedance matching (Maximum power transfer theorem)
- 4. Thevenin's & Norton's Theroem
- 5. LCR circuit series and parallel resonance
- 6. Identification & measurement of R.L& C in a black box.
- 7. Realization of Logic gates (NOT, OR, AND, NAND, NOR & XOR using NAND gates)
- 8. NAND gates, Demorgan's laws & given Boolean Expressions.
- 9. Energy gap of a semiconductor (Thermistor)
- 10. Half wave / full wave (Bridge Rectifier) using semiconductor diode
- 11. Zener Diode Characteristics
- 12. Zener Diode as a voltage regulator
- 13. OP-AMP as an amplifier & study of gain band width product
- 14. Inverting & Non Inverting Amplifier using IC 741.
- 15. Design and test adder circuit using IC 741
- 16. Design of Half Adder/Full Adder using NAND gats
- 17. IC 555 timer as a Monostable Multivibrator

INDIAN CONSTITUTION (COMPULSORY PAPER)

- 1. Significance of the constitution: Making of the constitution role of the constituent assembly, salient feature, the preamble, citizenship, procedure of amendment of the constitution. (10 Hrs)
- 2. Fundamental rights, the right to equality: The right to freedom, the right against exploitation, the right to freedom of religion, cultural and educational rights, the right to constitutional remedies.

 (10 Hrs)
- 3. Nature of the Directive Principles of State Policy: Difference between of fundamental rights and directive principles of state policy implementation of directive principles of state policy, fundamental duties. (8 Hrs)
- **4. Union government**: Powers and functions of the president, the prime minister, council of ministers. Composition, powers and function of the parliament, organization of judiciary, jurisdiction of the supreme court, independence of judiciary. (12 Hrs)
- 5. State government: Powers and function of governor, chief minister, council of ministers. Composition, powers and functions of state legislature, local government and the constitution, relation between the union and the states. (10 Hrs)

Books for reference

- 1. M. V. Pylee and Introduction the constitution of India, New Delhi Vikas 2005.
- 2. Subhash C. Kashap, Our constitution: and Introduction to India's constitution and constitutional law, New Delhi, National Book Trust, 2000.

BCA - SECOND SEMESTER

B.C.A 201(A): MATHEMATICS-II

(for commerce students only)

Total: 50 Hrs

ALGEBRA: Mathematical logic. logical equivalence. examples on switching circuits. (5 Hrs)

MATRICES AND DETERMINANTS: Solution of simultaneous equations by matrix method, eigen values and eigen vectors. Caley Hamilton theorem, diagonalising the matrix. (6 Hrs)

VECTORS: Up to scalar and vector triple products, work done, moment of force and a couple. (5 Hrs)

GROUP THEORY: Groups, properties of groups, subgroups, permutation group. (5 Hrs)

ANALYTICAL GEOMETRY: Circles and Conic sections (5 Hrs)

TRIGONOMETRY: Inverse trigonometric functions, general solutions of trigonometric equations and complex numbers, De Moiver's theorem, elementary functions - exp(z), sin z, cos z, and log z. (8 Hrs)

CALCULUS: Mean value theorem, intermediate theorem, Taylor's theorem and Mauclaurin's theorem, application of derivatives. Standard integrals, integration of algebraic, logarithmic, exponential and trigonometric functions. Integration by parts, definite integrals, applications of definite integrals

(10 Hrs)

DIFFERENTIAL EQUATIONS: Solution of differential equations of first order and second order. (6 Hrs)

REFERENCES

- 1. M. K. Singhal and Asha Rani Singhal. Algebra, R. Chand, New Delhi.
- 2. Shanti Narayana, Fisrt course in algebra, S. Chand and C), Ram nagar, New Delhi
- 3. Shanti Narayana, Vector algebra, S, Chand Co., Ram Nagar New Delhi (1974).
- 4. Dr. Hari Krishan, Text book of vector algebra and calculus, Himalaya Publishing house, Mumbai (1988).
- 5. S.L. Loney. Trignometry, Surject Publications, Kaman Nagar Delhi (1989).

B.C. A. 201 (B): ACCOUNTING AND FINANCIAL MANAGEMENT – II

Total: 50 Hrs

Accounting as an information system - Concept and nature; Accounting system and MIS; Electronic data processing, Features, advantages & disadvantages.

Company Account: Issue of shares at par, premium and discount Forfeiture of Shares Re - issue of forfeited shares. Issue of debentures at par, premium and at discount. Preparation of company final account. Financial statements Analysis and Interpretation meaning, objectives and classification of ratios-liquidity, solvency, activity and profitability ratios; advantages and limitations of ratio analysis.

Cost Accounting - Meaning, Objectives & functions of cost Accounting; cost accounting versus financial accounting; advantages and limitations of cost accounting.

Cost classification - Need and significance and methods of classification-Functional, behavioral, controllability, Variability, time element-wise classification, cost classification for managerial purposes; Segregation methods of Semi-variable costs into variable and fixed components; Preparation of cost sheets.

Material cost control - Meaning, objectives and classification of material cost; Purchase roc tine and determination of various levels; Prices of materials issues (FIFO & LIFO methods only).

Direct Labour cost control - Meaning, objectives and classification of labor cost; Computation of total direct labor cost. Methods of remuneration- time rate, place rate (including differential piecerates)-incentive Plans-Halsay and Rowan plans only.

Overhead cost control - Classification and collection of overhead cost; Primary and Secondary distribution of overheads; overheads absorption methods-direct labor hour rate and machine hour rate method only.

- 1. Jain & Narang, Advanced Accounting, (Kalyani Publishers)
- 2. S. N. Maheshwari, Advanced Accounting, (S. Chand and Sons)
- 3. R.L. Gupta, Advanced Accounting.
- 4. Dutta, Cost Accounting Pearson Education 2003
- 5. Jain, Narang, Cost Accounting; Kalyani Publishers; New Delhi
- 6. B.K. Bhar, Cost Accounting, (Academic Publications, Kolkatta)
- 7. S. N. Maheshwari, Management Accounting, (S. Chand and Sons)
- 8. J. Madegouda, Management Accounting, (Himalaya Pub. House, Mumbai)
- 9. M.N. Arora: Cost Accounting; Vikas Publications, New Delhi
- 10. Tulsian, Financial Accounting, Pearson Education.
- 11. Van Horne, Fundamentals of Financial Management 11/e Pearson Education.
- 12. Sharan, Fundamentals of Financial Management. Pearson Education 2005
- 13. Sharal, Fundamentals of Financial Management, Pearson Education 2005

BCA 202 : SECOND SEMISTER

ENGLISH

POETRY

Telephone Conversation : Wole Soyinka
 Laugh and Be Merry : John Masefield
 The Chimney Sweeper : William Blake
 A Hot Noon in Seagull : Kamala Das

PROSE

Socrates: David Has Borough
 A Snake in the Grass: R.K.Narayan
 Of Friendship: Francis Bacon
 Isaac Newton: Colin Swatridge

GRAMMER UNIT - MAXIMUM 30 MARKS

1.	Voices	1 X 5=5
2.	Direct and Indirect Speeches	1 X 5=5
3.	Simple, Compound and Complex Sentences	1 X 5=5
4.	Auxiliaries	1 X 5=5
5.	Paragraph Writings	1 X 5=5
6.	Letter Writing	1 X 5=5

B.C.A 203: DATA STRUCTURES USING C

Total: 50 Hrs

Introduction to Data structures: Definition, Classification of data structures : primitive and non-primitive, Operations on data structures. (2 Hrs)

Dynamic memory allocation and pointers: Definition Accessing the address of a variable, Declaring and initializing pointers. Accessing a variable through its pointer. Meaning of static and dynamic memory allocation. Memory allocation functions: malloc, calloc, free and realloc. (4 Hrs)

Files - Introduction: Definition Basic file operations: Naming a file, Opening a file, Reading data from file, writing data to a file, and closing a file. Defining, opening and closing a file. Input / Output operations on files: getc, putc, getw, putw, fprintf, fscanf. Error handling during I/O operations: Common errors "during I/o operations, feof, ferror Random Access to files: fseek, ftell, rewind functions.

(4 Hrs)

Recursion: Definition, Recursion in C, Writing Recursive programs – Binomial coefficient, Fibonacci, GCD. (4 Hrs)

Searching and Sorting Search: Basic Search Techniques: Search algorithm searching techniques: sequential search, Binary search - Iterative and Recursive methods. Comparison between sequential and binary search.

Sort - General Background: Definition, different types: Bubble sort, Selection sort, Merge sort, Insertion sort, Quick sort (10 Hrs)

Stack - Definition, Array representation of stack, Operation on stack: Infix, prefix and postfix notations Conversion of a arithmetic expression from Infix to postfix. Applications of staks. (6 Hrs)

Queue - Definition, Array representation of queue, Types of queue: Simple queue, circular queue, double ended queue (deque) priority queue operations on all types of Queues. (6 Hrs)

Linked list - Definition, Components of linked list, Representation of linked list, Advantages and Disadvantages of linked list. Types of linked list: Singly linked list, Doubly linked list, Circular linked list and circular doubly linked list. Operations on singly linked list: creation, insertion, deletion, search and display. (7 Hrs)

Tree - Definition: Tree, Binary tree, Complete binary tree, Binary search tree, Heap Tree terminology: Root, Node, Degree of a node and tree, Terminal nodes, Non-terminal nodes, Siblings, Level, Edge, Path, depth, Parent node, ancestors of a node. Binary tree: Array representation of tree, Creation of binary tree Traversal of Binary Tree: Preorder, Inorder and postorder. (7 Hrs)

Text books

- 1. Kamthane: Introduction to Data Structures in C. Pearson Education 2005.
- 2. Langsam, Ausenstein Maoshe & M. Tanenbam Aaron Data Structures using and C⁺⁺ Pearson Education

- 1. Weiss, Data Structures and Algorithm Analysis in C, II Edition, Pearson Education,
- 2. Lipschutz Schaum's outline series Data structures Tata McGraw Hill
- 3. Robert Kruse Data Structures and program designing using 'C'
- 4. Trembley and Sorenson Data Structures
- 5. E. Balaguruswamy Programming in ANSI C.
- 6. Bandyopadhyay, Data Structures Using C Pearson Education
- 7. Tenenbaum, Data Structures Using C. Pearson Education

B.C.A 204: NUMERICAL AND STATISTICAL METHODS

Total: 50 Hrs

1. Numerical Methods:

- **1.1** Solution of equations (polynomial and transcendental equations). Interval halving methods, secant, Regula Falsi, Newtons-Raphon methods, Fixed point iteration method. (8 Hrs)
- **1.2 Solution of system of linear equations :** Gaussian elimination method, Gauss Jordan, Gauss-Siedal iteration methods, LU Decomposition method, Eigen values and Eigen vectors of a Square matrix. **(8 Hrs)**
- **1.3 Newtons forward and backward differences,** Interpolation formula-Lagrange interpolation, Curve fitting by least squares method. (5 Hrs)
- **1.4 Numerical differentiation, Integration:** Trapezoidal and Simpson' formula. Romberg Integration. (4 Hrs)

2. Statistical Methods:

- **2.1 Basics concepts and definition of statistics**: Mean, standard deviation, coefficient of variation, skewness & kurtosis, Karl Pearson Correlation coefficient, Rank correlation, Regression and illustrated examples. (6 Hrs)
- **2.2 Probability**: Basic concepts and definition of probability, Probability axioms, Laws of probability (based on set theory' concepts), Conditional probability, Baye's theorem, Problems and application. (6 Hrs)
- **2.3 Random variable and Expectation :** Discrete and continuous random variables, expectation of random variables, theorems on expectation, illustrative examples. (3 Hrs)
- **2.4 Probability Distribution:** Probability function, Probability mass / density function Discrete Distribution-Bernoulli, Binomial, Geometric distributions, continuous distribution -Exponential, Normal and Weibul Distribution applications and problems. (7 Hrs)
- 2.5 Reliability: Basic concepts and definition of reliability, hazard, IFR and DFR, parallel and series system, Application and problems(3 Hrs)

- 1. M.KJain, SRK Iyengar and R.K. Jain Numerical methods for Scientific and engineering computation: Wiley Eastren (1998)
- 2. S.S .Shastry.: Introductory methods of numerical Analysis PHI (New Delhi) 2001 3. K.S.Trevedi (1998) Probability and statistics with Relability Queing and computer Science application Prentice Hall of India, Pvt. Ltd ,New delhi
- 4. Vik Kapoor & Gupta: mathematical statistics S.Chand & Co., New Delhi
- 5. Y. P.Agarwa1: Statistical methods, Applications and Computations Sterling Pub. PvtLtd NewDelhi
- 6. S.K.Shina & B.K.Gale: Theory & Relability

BCA 205: COMPUTER ORGANIZATION & ARCHITECTURE

Total:50 Hrs

Digital Logic Circuits: Logic gates Boolean algebra, map simplification, combinational circuits, flip-flops, sequential circuit. Integrated Circuit and Digital Functions: Digital integrated circuit, IC flip-flops and registers, decoders and multiplexes, binary counters, shift registers, random-access memories (RAM), read-only memories (ROM).

Data Representation: Data types, fixed-point representation, floating-point representation, other binary codes, error detection codes.

Basic Computer Organization and Design: Instruction codes, Computer instruction, timing .and control, execution and instruction, input-output and interrupt, design of Computer.

Central Processor Organization: Processor bus organization, arithmetic logic unit CALU), stack organization, instruction formats, addressing modes, data transfer and manipulation, program control, microprocessor organization.

Input-Output Organization: Peripheral devices, I/O interface, asynchronous data transfer, direct memory access (DMA), priority interrupt, input-output processor (IQP).

Memory Organization: Auxiliary memory, microcomputer, memory hierarchy, associative memory, virtual memory, cache memory, memory management hardware.

Text books:

1) Stallings: Computer Organization and Architecture, 6/e Pearson Education 2002

References:

- 1) Mano: Computer System Architecture, Pearson Education
- 2) V. Heuring & H. Jordan, Computer System Design & Architecture, 2/e. Pearson Education
- 3) M. Moris Mano, computer System Architecture, 2nd Edition Prentice Hall of India (1991)
- 4) Heuring and Jordan, Computer systems design and Architecture, Pearson Education (2003).
- 5) William Stallings, Computer Organization and Architecture, Pearson Education (2003)
- 6) Floyd, Digital Fundamentals, 8th Edition, Pearson Education (2003).
- 7) Andrew S. Tenenbaum, Structured Computer Organization; 3rd Edition, Prentice Hall of India, (1990).
- 8) John P. Hayes, Computer Architecture and Organization, 2nd Edition, McGraw hill International Edition, Computer Science Series, (1988).

BCA 206: COMPUTER LAB 2.1 (BASED ON BCA 204)

Sample Programs:

- 1. Write a C program to search for an element in an array using Binary search
- 2. Write a C program to sort a list of N elements using Bubble sort Technique
- 3. Write a C program to Demonstrate the working of staff of size N using an array

The elements of the staff may assume to be of type integer or real, the operations to be, supported are 1. PUSH 2. POP 3. DISPLAY program should print appropriate messages for STACK overflow, Under flow and empty, use separate functions to detect these cases

- 4. Write a C program to simulate the working of an .ordinary Queue using an array. Provide the operations QINSERT, SDELETE and QDISPLAY. Check the Queue status for empty and full.
- 5. Write a C program to simulate the working of an Circular Queue using an array. Provide the operations CQINSERT, CQDELETE and CQDISPLAY. Check the Circular Queue status for empty and full.
- 6. Using dynamic variables and pointers, Write a C program to construct a singly linked list consisting of the following information in each node; Roll-No (Integer), Name (Character string)

The operations to be supported are;

- 1. L INSERT Inserting a node in the front of the list
- 2. L DELETE Deleting the node based on Roll- No
- 3. L SEARCH Searching a node based on Roll-No
- 4. L DISPLAY Displaying all the nodes in the list
- 5. Write a C program to sort a list of N elements using Merge sort Algorithm
- 6. Using Dynamic variables and pointers construct Binary search tree of integers, Write C functions to do the following;
 - 1. Given a KEY, Perform a search in Binary search tree. If it is found display Key found else insert the key in the Binary search tree.
 - 2. While constructing the Binary search tree do not add any duplicate
 - 3. Display the tree using any of the traversal method
- 7. Write a C program to sort a list of N elements of integer type using heap sort Algorithm
- 8. Write a C program to simulate the working of Towers of Hanoi problem for N disks, print the total number of Moves taken by the program.
- 9. Write a C program to sort a list of N elements of integer type using quick sort Algorithm
- 10. Write a C program to find the Binomial coefficient using recursion
- 11. Write a C program to convert and print a given valid fully parenthesized in fix arithmetic expression to post fix expression, the expression consists of single character (letter or digit) as operands and +, -, *, / as operators, assume that only binary operators are allowed in the expression
- 12. Write a C program to search for an element using sequential search
- 13. Write a C program to create file for N students, it should contain Roll-NO, Name, Marks in two subjects. Using the above created file, create an out put file which contains Roll-No, Name, Marks in subjects, Total and Average.

BCA 207 : COMPUTER LAB 2.2 (BASED ON BCA 201 (B) & BCA 203)

Sample Programmes on BCA 201 (B):

- 1) Management information Systems and data Processing.
- 2) Recording of transactions relating to issue of shares, forfeiture of shares and Re issue of forfeited shares, Issue of Debentures.
- 3) Preparation of final accounts of Joint stock companies.
- 4) Calculation of different rations and their interpretation.
- 5) Preparation of cost-sheet
- 6) Problems on purchase of materials, inventory turnover ratios and other sundry problems.
- 7) Calculation of different levels of stock.
- 8) Preparation of stores ledger accounts as per FIFO and LIFO prices. Calculation of cost of goods sold, value of stock and profit as per the above methods.
- 9) Calculation of earnings of employees as per time rate, Piece rate (including differential piece-rates).
- 10) Calculation of earnings of employees by applying Halsay and Rowan incentive plans.
- 11) Preparation of primary distribution summary for determining overhead cost of production and services departments.
- 12) Preparation of secondary distribution summary considering and without considering, interservice of the service departments.
- 13) Determination of Machine-hour Rate.

BCA 203: NUMERICAL METHODS

Sample programs

- 1) Write a program to interchange primary and secondary diagonal element of square matrix
- 2) Write a program to find the row sum, column sum, primary diagonal sum and secondary diagonal sum of a matrix.
- 3) Write a program to check whether the given matrix is singular or not
- 4) Write a program for the addition, subtraction and multiplication f two matrices using functions.
- 5) Write a program to accept a square matrix and determine whether it is an identity matrix or not.
- 6) Write a program to find the roots of an equation f(x) = 0 using Bisection method.
- 7) Write a program to find the roots of an equation \cdot (x) = 0 using Regula False method.
- 8) Write a program to write a program to find the roots of an equation f(x) = 0 using Newton Rephson method.
- 9) Write a program to find the integral of a function using trapezoidal rule.
- 10) Write a program to find the integral function using Simpson's 1/3rd and 3/8th ruleusing switch case.
- 11) Write a program to solve the system of equation Ax = b using Gauss Elimination method.
- 12) Write a program to solve the system of equation ion Ax = busing Jacobi Iteration method.
- 13) Write a program to solve the system of equation Ax = b using Gauss Seidal method.

BCA 203: STATISTICAL METHODS

Sample programs on

- 1) Write a program to construct a discrete frequency distribution table and find mean and standard deviation.
- 2) Write a program to construct a continuous frequency distribution table for given data and find mean and standard deviation.
- 3) Write a program to find Arithmetic mean, Geometric mean and Harmonic mean of N given numbers.
- 4) Write a program to find the mean, mode and median of continuous frequency distribution.
- 5) Write a program to find the Karl Pearson correlation coefficient between two variables.
- 6) Write a program to find the rank correlation, coefficient between two variables.
- 7) Write a program to fit the regression equation X on Y and Y on X.
- 8) Write a program to fit binomial distribution.
- 9) Write a program to fit Poisson distribution.
- 10) Write a program to find trend values using 3 year and 4 year moving average method.
- 11) Write a program to fit straight line equation and obtain trend value.
- 12) Write a program to fit exponential equation and obtain trend values.

BCA - THIRD SEMESTER

BCA 301: OPERATING SYSTEMS

Total: 50 Hrs

- **1. Introduction:** Batch Systems, Concepts of Multiprogramming and Time Sharing, Parallel, Distributed and real time. Systems, Operating System Structures, Components & Services, System calls, System programs, Virtual machines (6 Hrs)
- Process management: Process Concept, Process Scheduling, Co Operating process, Threads, Inter process communication, CPU Scheduling Criteria, Scheduling algorithm, Multiple Processor Scheduling, Real time Scheduling, Algorithm evolution. (8 Hrs)
- **3. Process Synchronization and deadlocks:** The Critical Section Problem, Synchronization hardware, Semaphores, Classical problems of synchronization, Critical regions, monitors, Dead locks System model, Characterization, Dead lock prevention, avoidance and detection, Recovery from dead lock, Combined approach to deadlock handling. (10 Hrs)
- **4. Memory Management:** Logical and Physical address space, Swapping, Contiguous allocation, Paging, Segmentation, Segmentation with paging in Mastics and Intel 386, Virtual memory Demand paging and it's performance, Page replacement algorithms, Allocation of frames, thrashing, page size and other considerations. Demand Segmentation . (10 Hrs)
- **5. File management (Systems, Secondary Storage Structure):** File Concepts, Access methods, Directory Structure, Protection and consistency semantics, File system structure, Allocation methods, Free space management, Directory Implementation, Efficiency and Performance, Recovery. (8 Hrs)
- **6. Disk : Management (Structure, Disk Scheduling Methods):** Disk Structure & Scheduling methods, Disk management, Swap Space management, (4 Hrs)
- **7. Protection & Security:** Goals of protection, Domain Protection, Access matrix, Security Problem, Authentication., One time password, program threats, System threads. (4 Hrs)

Text books:

- 1. Abraham Silberschatz and peter Baer Galvin, Operating System Concepts, Fifth Edition, Addision- Wesley 1989 (Chapter 1,3.1,3.2,3.3,3.4,3.6,4,5,6 (Except 6.8,6.9), 7,8,9,10,11,13, (Except 13.6) 19 (Except 19.6),20(Except 20.8,20.9),22,23)
- 2. Nutt: Operating Systems, 3/e Pearson Education 2004

- 1 Milan Milonkovic, Operating System Concepts and design, II nd Edition, McGraw Hill 1992.
- 2 Richard Peterson, Linux- The complete reference.
- 3 Tanenbaum, Operation System Concepts. Pearson Education.
- 4 Nutt, Operating Systems. Pearson Education.
- 5 Stallings, Operating Systems, Pearson Education.

BCA 302: OOPS USING C++

Total: 50 Hrs

1. Introduction: Procedural Languages, definition of OOP, Basic concept of OOP, Object, Class, Data Abstraction, Data Encapsulation, Data Hiding member functions, Reusability, Inheritance, Creating new Data Types, Polymorphism, Overloading, Dynamic binding and Message passing.

(2 Hrs)

- **2.** C++ Features: The iostream class, C++ Comments, C++ Keywords, Variable declaration, The Const Qualifier. The Endl, Setw, set precision, Manipulators, The scope resolution operator, The new & delete Operators. (1 Hrs)
- **3. Functions:** Simple Functions: Function declaration, calling the function. fl"1ction definition; Passing argument to, returning value' from function; passing constants, Variables, pass by value, passing structure variables, pass by reference, Default arguments, return statements, return by reference, overloaded functions; different number of arguments, Different Kinds of arguments, inline function (1 Hrs)
- **4. Objects & Classes:** Classes & Objects, Class Declaration, Class member: Data Constructors, Destructors, Member functions, Class member visibility; private, public, protected. The scope of the class object constructors; Default Constructor, Constructor with argument, constructor with default arguments, Dynamic constructor, copy constructor, Overloaded constructor, Objects as function argument; member functions defined outside the class, Objects as arguments, returning objects from functions, class conversion, manipulating private Data members, Destructors, classes, objects & memory, array as class member data, Array of objects, string as class member (12 Hrs)
- **5. Operator Overloading :** Overloading unary operator: Operator Keyword, Operator Arguments, Operator return value, Nameless temporary objects, limitations of increment operator, overloading binary operator, arithmetic operators, comparison operator, arithmetic assignment operator, Data conversion; conversion between Basic types, Conversion between objects & Basic types, conversion between objects of different classes. **(6 Hrs)**
- **6. Inheritance :** Derived Class & Base Class: Specifying the Derived class accessing Base class members, the protected access specifier, Derived class constructor, Overriding member functions, public and private inheritance; Access Combinations, Classes & Structures, Access Specifiers, Level of inheritance; multilevel inheritance, Hybrid inheritance, Multiple inheritance; member functions in multiple inheritance, constructors in multiple inheritance, Containership; Classes within classes, Inheritance & Program Development. **(8 Hrs)**
- **7. Virtual Functions:** Normal member function accessed with pointers, Virtual member functions accessed with pointers, Dynamic binding, pure virtual functions, Friend function; Friends for functional notation, friend classes, the this pointer; Accessing Member Data with this, using this for returning values.

 (5 Hrs)
- **8. Templates & Exception Handling:** Introduction, Templates, Class Templates, function templates, Member function templates, Template arguments, Exception Handling. (4 Hrs)

9. Streams : The Stream class Hierarchy, Stream classes Header file, string I/O: Writing strings, reading strings, character I/O, Detecting End - of - file. Object I/O; writing an object to disk reading an object from disk, I/O with multiple Objects; the f stream class. The open function, File Pointers; Specifying the position, Specifying the offset. The tellg Function, Disk I/O with Memory Functions; Closing Files, Error Handling, Command Line Arguments. . **(5 Hrs)**

Text books:

I Prata: C++ Primer Plus, 4/e Pearson Education

2 Lafore Robert: Object Oriented Programming in Turbo C++, Galgotia Publications

- I. Lippman: C++ Primer, 3/e Pearson Education
- 2. E. Balaguruswamy: Object Oriented Programming with *C*++, Tata McGraw Hill Publications.
- 3. Strousstrup: The C++ Programming Language, Pearson Edition, 3rd Edition
- 4. Kamthane: Object Oriented Programming with ANSI and Turbo C++, Pearson Education
- 5. Bhave: Object Oriented Programming Using C++, Pearson Education

BCA 303: DISCRETE MATHEMATICAL STRUCTURES

Total: 50 Hrs

- **1. Fundamental Principles of Counting:** The rules of sum and product, Permutations, combinations, the Binomial Theorem, Combinations with repetitions. (7 Hrs)
- **2. Fundamentals of Logic:** Basic connectives and truth Tables, Logical equivalence, the laws of logic, logical implication, rules of inference, use of quantifiers, quantifiers, definitions and proofs of Theorems. (15 Hrs)
- **3. Set Theory:** Sets and subsets, set operations and the laws of set theory, counting and venn diagrams, Probability. (7 Hrs)
- **4. Properties of Integers and Mathematical Induction:** The well ordering principle, Mathematical induction, Recursive definitions, the division algorithm, prime numbers, the GCD, Euclid's algorithm, the fundamental theorem of Arithmetic. (10 Hrs)
- **5. Relations and functions:** Cartesian Products and relations, Functions, plain & one one function. Onto functions, stirling numbers of the second kind, special functions, the Pigeonhole Principle, function composition and inverse functions, computational complexity, Analysis of Algorithms.

(11 Hrs)

Text Books:

- I) Ralph. P. Grimaldi, Discrete and Combinatorial Mathematics, An applied introduction, Pearson Education (LPE) Fourth edition, 6th Indian Reprint, 2004. (Chapter 1 to 5).
- 2) Kolman, Busby & ross, Discrete Mathematical, 51e, Pearson Education 2003.

- 1) C.L. Liu, Elements of discrete Mathematics, McGraw Hill, 1985.
- 2) Richard Johnsonbaugh, Discrete Mathematics, 5th Edition, Pearson Education (LPE) 2003.
- 3) Rajendra Akerkar and Rupali Akerkar, Discrete Mathematics, Pearson Education, 2004

BCA 304: VISUAL PROGRAMMING

Total: 50 Hrs

INTRODUCTION TO VB: The integrated Development Environment - menu bar, tool bar form designer, project explorer, properties window, form layout window. The VB editor. (5 Hrs)

THE FORM OBJECT: Properties, events and methods of forms; Properties - Name, Caption, Backcolor, Borderstyle, control box, maxbutton, minbutton, moveable, startup position, height, width, left, top, scalemode, window state; Events - load, unload, Click, Activate, Deactivate, Resize, methods - Show, hide, CLS, unload, print. Control Properties and events of different controls such as command buttons, labels, text boxes, image controls, timer, horizontal and vertical scroll bars, option buttons; check boxes, frames, lists and combo boxes. Predefined Dialog Boxes – Msg Box and Input Box. (15 Hrs)

PROGRAMMING IN VB: Data types, variables, declaration and scope arithmetic operations, Study of form and code modules; private and public procedures. Main () procedure. Subs and Functions. Mathematical and string Functions; Branching and Looping Statements; If - Then, If - Then - Else and Nested If Statements; Select Case different forms; For - Next, While - Wend and Do Loops statements; Arrays declaration. Static and dynamic arrays. Array () Function; menus and toolbars - Creating menus and toolbars, Working with the menu editor, Designing Multiple Document interface forms. Microsoft common controls. OOP methods and properties of an object, class Modules, Encapsulation and Inheritance characteristics; Dynamic Link Libraries (DLLs) and Windows API; Designing Help files; File handling - Sequential, Random access and Binary files, Database connectivity DAO and ADO Tables and Queries. ActiveX Data objects. (30 Hrs)

Text books:

1) Deitel, Visual Basic 6 How to Program. Pearson Education

- 1. Neol Jerke, The Complete Reference Visual Basic 6, Tata McGraw Hill (1999)
- 2. Evangelas and Petroutsos, Mastering VB 6, 1st Edition, BPB Publications (2001).
- 3. V.K. Jain, Introduction to OOP and VB, Vikas Publishing house (2003)
- 4. Gottfried, Programming with Visual Basic, Schaum's Series Tata McGraw Hill.
- 5. Reselman, Peasley and Pruchniak, Using Visual Basic 6, PHI (2000).

BCA: 305: DATA COMMUNICATIONS

Total: 50 Hrs

- 1. Introduction:-Communication Network and Services; Approaches to Network
- Design Network Functions and Network Topology, Message, Packet and Circuit Switching, Telegraph Networks & message switching Telephone Networks and Circuit Switching, The Internet & Packet Switching; Key factors in Communication Network Evolution; Layered Architecture and Applications Examples of Layering, OSI Reference Model, TCP / IP Model Telnet FTP & IP Utilities.

 (6 Hrs)
- 2. Digital Transmission and Transmission Systems: Digital Representation of Information: Properties of digital transmission, characterization of Communication Channels Frequency Domain and Time Domain: fundamental limits in Digital Communication The Nyquist Signaling rate, The Shannon channel capacity; Line coding, Modems & digital Modulation; properties of media and digital transmission Systems Twisted Pair, Coaxial Cable, Optical fibre Radio Transmission Infrared Light; Error detection and Correction Error detection Two-dimensional parity checks, Internet checksum, Polynomial codes, standardized Polinomial codes, Error detecting capability of a polynomial code; Multiplexing Frequency Division. Time Division; SONET; Wavelength Division Multiplexing; Circuit switches; Telephone network; Signaling Traffic and Overload control in Telephone networks -Concentration, Roating Control, Overload controls; Cellular Telephone Networks, Satellite Cellular Networks.
- **3. Peer-to-peer protocol :-** Peer-to-Peer Protocols and service models ARQ Protocols stop and wait, Go-back-N Selective Repeat, Transmission efficiency of ARQ Protocols; Other adaptation functions, Sliding window flow control, Timing Recovery in Synchronous Services Reliable Stream Service, Data Link Control, HDLC, PPP; Statistical Multiplexing. (10 Hrs)
- **4. Local Area Networks and Medium access Control Protocols :** Multiple access communications; Local Area Network LAN Structure, MAC Sublayer, Logical link control layer; Random Access protocols ALOHA, Slotted ALOHA, CSMA, CSMA/CD, Scheduling approaches to medium access control Reservation Systems, polling, Token passing rings, comparison of Random access & Scheduling access control, Comparison of Random access & scheduling medium access controls; Channelization FDMA, TDMA, CDMA; LAN Standards Ethernet and IEEF, 802.3 LAN Standard, Token Ring and IEEE 8025 LAN standard, FDDI, Wireless LAN's and IEEE 802.11 standard; LAN Bridges Transparent Bridges, Source Routing Bridges, Mixed media Bridges. (12 Hrs)
- **5. Packet Switching Networks:** Network services & Internal Network Operation; Packet Network Topology; Datagrams & Virtual Circuits; structure of switch Router, connectionless packet switching; Virtual Circuit packet switching.; Overview of outing and congestion in packet networks Routing algorithms classification. Routing tables, shortest path routing algorithms, Flooding, Hierarchical routing, Distance vector routing, Link state routing, congestion control algorithms.

 (6 Hrs)

Text books:

- 1) Stallings, Data and Computer Communications, 7 Ie, Pearson Education, 2003
- 2) Alberto Leon-Garcia & Indra Widjaja, Communication Networks Fundamental Concepts & Key architectures, Mc.Oraw Hill 2000.

- 1) Andrew S Tanenbaum Computer Networks, 4/e, Pearson Education
- 2) S. Keshav, An Engineering Approach to Computer Networks, Pearson Education.
- 3) Schrouz Ferouzan, Introduction to Data Communications & Networking TMH, 1999.
- 4) Larry & Peterson & Bruce S Davis; Computer Networks Second Edition, Morgan Kaufman, 2000.
- 5) Halsa, Data Communication, Computer Networks and Open Systems.
- 6) Held, Understanding Data Communications.

BCA - 306: COMPUTER LAB 3.1 (Based on BCA 302)

Sample programs:

- 1) Write a program to implement digital clock
- 2) Write a program to swap two numbers using friend function
- 3) Write a program to calculate area and circumference of circle using inline function
- 4) Write a program to create electricity bill
- 5) Write a program to prepare a shopping lists
- 6) Write a program to perform bank transaction
- 7) Write a program to perform addition of two matrices using operator overloading.
- 8) Write a program to perform multiplication of two matrices using operator overloading.
- 9) Write a program to find sum of complex number using friend function.
- 10) Write a program to 'implement operation on stack.
- 11) Write a program to add two distance variable.
- 12) Write a program to implement operation on queue.
- 13) Write a program to sort elements using templates.
- 14) Write a program to find the maximum of two numbers using template.
- 15) Write a program to compare two string using equal to operator.
- 16) Write a program to concatenate two strings.
- 17) Write a program to find maximum of two nos. using friend function.
- 18) Write a program to create a student report using inheritance technique.
- 19) Write a program to add two time variable
- 20) Write a program to implement area of geometrical figures

BCA - 307: COMPUTER LAB 3.2 (Based on BCA 304)

Sample programs:

- 1) Design an application to validate- the user name and password and display appropriate message using message box control.
- 2) Application to change the font size, font and style of a text string using combo boxes.
- 3) Application to change the calculator using design array.
- 4) Application to design a calculator using design scroll bar.
- 5) Application to play AVI file containing audio and video using MCI control.
- 6) Application to play media file using active movie control or media player.
- 7) Application to design a screen saver (using timer).
- 8) Application to animation using animation control.
- 9) Application to move an image using a timer and command button controls.
- 10) Application to design MDI form to child and design the menu.
- 11) Design an application to establish connection to data base (Using data control).
- 12) Design an application to demonstrate sequential file access in VB.
- 13) Design an application to demonstrate the encryption and decryption in VB
- 14) Program to convert a number to wordings (up to 1000).
- 15) Program to display the message" welcome to Visual Basic" at the center of the window with random fore color for the message and random back color for the font.
- 16) Program to display the message "welcome to Visual Basic" through out the window with random fore color for the message.
- 17) Program to display a working analog clock at the center the font
- 18) Windows API: Program to display a form always on the top of other Windows.
- 19) Program to display the message "welcome to Visual Basic" in a label box. The label box should scroll from right to left.
- 20) Program to accept only numbers with fractional part using text box.

BCA - FOURTH SEMESTER

BCA 401: DESIGN AND ANALYSIS OF ALGORITHMS.

Total: 50 Hrs

- **1. Introduction:** Definition of algorithm, Characteristic of algorithm, Different Control Structures, writing Structured Programs, Analysis of algorithm (5 hrs)
- **2. Divide and Conquer:** General Method, Binary Search, Finding Maximum & Minimum., Merge Sort, Quick Sort, Selection Sort, Strassen's matrix multiplication. (10 hrs)
- **3. Greedy Method:** General method, Knapsack Problem, Job Sequencing with deadline, Minimum cost- Spanning trees, Optimal Storage on tapes, Optimum merge patterns, Single Sour Shortest Paths,

 (10 hrs)
- **4. Dynamic Programming:** Introduction to Graphs, Definition types, Terms related to graph, General Method, Multistage Graphs, All pair Shortest Paths, Optimal binary Search trees, 0/1 knapsack, The traveling salesperson problem, Flow Shop Scheduling. (10 hrs)
- **5. Basic traversal & Search techniques:** Search & traversal techniques for trees, Search & traversal techniques for graphs, Code Optimization, AND / OR Graphs, Game trees.
- **6. Backtracking:** General method, The 8- Queens Problem, Sum of subsets, Graph Coloring, Hamiltonian Cycles, Knapsack Problem., (7 Hrs)

Textbooks:

- 1. Fundamentals of Computer algorithm Ellis Horowing, Sartaj Sahni, Sanguthevar rajasekam.
- 2. Design & Analysis of algorithm- Horowing, Sahni.

- 1. Addison Usekey, The design & analysis of Computer algorithms.
- 2. Alfred V. aho, John, E-hopocraft
- 3. Alter, Information Systems.

BCA 402: SYSTEM ANALYSIS AND DESIGN

Total: 50 Hrs

Systems Concepts and the Information Systems Environment: Introduction. The Systems Concept: Definition. Characteristics of a System: Organization, Interaction, Interdependence. Integration. Central Objective. .elements of a System: Inputs and Outputs. Types of a System.

The System Development Life Cycle: Introduction. The System Development Life Cycle. Considerations for Candidate Systems.

The Role of the Systems Analyst: Historical Perspective. The Multifaceted Role of the Analyst: The Analyst/User Interface.

System planning and the Initial Investigation: Introduction Bases for Planning in System Analysis, Initial Investigation. Information Gathering: Introductions, Tools of Structured analysis

The Tools of Structured Analysis: Introduction, Tools of Structured Analysis.

Feasibility Study: Introduction, System Performance Definition.

The Process and Stage of System Design: The process Design, Design methodologies, Major Development Activities.

Input/output and Forms Design: Introduction, Input Design.

System Implementation: System Testing and Quality Assurance.

Text Books:

1. Elias M. A wad, System Analysis and Design, Golgotia, (1995)

- 1. Raja Raman V, analysis and Design of Information System, PHI, (1998)
- 2. Clifton H.D., Business Data Systems, PHI, (1999)
- 3. Henry C. Lucas, Analysis, Design and Implementation of Information Systems, PHI, (1996).
- 4. James A. Sen, Analysis and Design of Information Systems McGraw Hill Int. Ed, (1996)

BCA 403: SYSTEM PROGRAMMING

1. Background: Machine Structure, Evolution of the Components of a Programming System., Assembler, Loaders, Macros, Compilers, Formal Systems. (3 Hrs)

- 2. Machine Structure, Machine Language and assembly language.: General Machine Structure,Machine Language, Assembly Language (8 Hrs)
- 3. Assemblers: General Design Procedure, Design of assembler, Statement of Problem, Data structure, Fom1at of databases, algorithm, look for modularity, Table Processing: Searching and Sorting., The problem, Searching a table, linear Search, binary Search, Sorting, interchange sort, Shell Sort, Bucket Sort, Radix Exchange Sort, address calculation sort, comparison of sorts, hash or random entry searching. (10 Hrs)

MACRO LANGUAGE AND THE MACRO PROCESSOR: Macroinstruction, Features or macro facility, Macro instruction arguments, conditional macro Expansion, macro calls within macros, macro instructions defining macros, Implementation, Statement of problem, implementation of a restricted facility, A two pass algorithm. A single pass algorithm, implementation of macro calls within macros. Implementation within an assembles. (10 Hrs)

LOADERS: Loader scheme's, Compile & go, General loading Scheme, absolute loaders, Subroutine Languages, Relocating loaders, Direct linking loaders, other loading Schemes - Binders, linking loaders, Overlays, Dynamic binders. Design of absolute loader, Design of a Direct linking loader Specification of problem, Specification of data structure, format of data bases algorithm.

(10 Hrs)

Total: 50 Hrs

COMPILERS: Statement of problem, Problem 1: Recognizing basic elements, Problem 2: Recognizing Syntactic cutis & interpreting meaning, Problem 3: Storage allocation., Problem 4: Code Generation. Optimization (machine independent) optimization (machine dependent), Assembly Phase, General model of compiler (6Hrs)

PHASES OF COMPILERS: Simple Structure of Compiler, Brief introduction to 7 Phases of Compilers, (3 Hrs)

Text books:

- I. John J. Donowon, System Programming, TAT A McGraw-Hill.
- 2. Beck: System Software, 3/e Pearson Education

- 1. Dhamdhere: System programming and Operating System TMH
- 2. Laudon & Laudon, Management Information Systems, 8/e. Pearson Education

BCA 404: COMPUTER GRAPHICS

Total: 50 Hrs

- **1. Graphics Systems**: Display Devices, Hard Copy Devices, Interactive Input Devices, Display Processors, and Graphic software. (4 Hrs)
- **2. Output Primitives**: Points & Lines, Line drawing algorithms, DDA & Bresenham's line algorithms, Circle generating algorithms, Ellipses. Attributes of output primitives, line type, line width, line color, area filling, Shean line algorithm. **(8 Hrs)**
- **3. Two Dimensional Transformations**: Basic transformations, translation, Scaling and Rotation. Matrix representations and homogeneous co-ordinates, composite transformation -translation; scaling and rotations. Roster methods for transformation. **(8 Hrs)**
- **4. Windowing and Clipping**: Windowing concepts clipping algorithms, line clipping, area clipping, Blanking window to view port transformations. (6 Hrs)
- **5. Interactive Input Methods**: Physical input devices: keyboards, touch panels, line pens, graphics tablets, joysticks, mouse, trackball, interactive picture construction techniques. . (4 Hrs)
- **6. Three Dimensional Concepts**: Three-dimensional co-ordinate systems, three dimensional display techniques, perspective and parallel projections, polygon surfaces, curved surfaces, octrees, three dimensional transformations. **(6 Hrs)**
- **7. Hidden Surface and Hidden Line Removal**: Back-face removal, depth buffer method, scan line method. **(8 Hrs)**
- 8. Shading and Color Mode: User interface.

(6 Hrs)

Text books:

- 1) Donald Hearn & M.Pauline Baker, Computer Graphics C Version, Pearson Education PHI
- 2) Computer Graphics Steven Harrington, McGH
- 3) Dr. Venugopal K.R. Syeda Noor Fathima, H.S. Vemala, A programming Approach, programming with Fortran Pascal and C, TMH.

- 1. Principles of Interactive Computer Graphics Newman and Sproull, McGraw Hill
- 2. Graphics Under C Yeshwant Kanetkar, BPB Publications
- 3. James D Foley, Adries Van Dam, Steven K Feiner, John F Hughes, Computer Graphics, Addison Wesley, 1997.
- 4. Cooley: The Essence of Computer Graphics Pearson Education

BCA 405: MICROPROCESSORS

Total: 50 Hrs

- **1. Architecture and Operation:** Introduction to 8085, Microprocessor organization / architecture & its operation, Microprocessor based system, memory interfacing, basic interfacing concepts, interfacing I/O devices. (5 Hrs)
- 2. Programming the 8085: Programming model, instruction classification, Instruction format, Addressing modes, writing assembly level programs-overview of instruction set, timing diagrams. Data transfer, Arithmetic, Logic branch operations. Programming techniques Looping, Counting and Indexing, 16 bit arithmetic operations, logic operations, Compare and rotate operations. counters and Time delays, Generation of pulse waveforms. Stacks and subroutines-conditional CALL and RETURN instructions. Advanced subroutine concepts. BCD to Binary and Binary to BCD conversions, BCD to 7 segment conversion, Binary to ASCII and ASCII to Binary code conversion, BCD addition and subtraction, multiplication and division. (20 Hrs)
- 3. Memory Interface: Memory and I/O mapping and interfacing concepts. (5 Hrs)
- **4. Interrupts:** 8085 vectored interrupts, Restart as Software instructions, Additional I/O concepts and processes. (5 Hrs)
- **5. Interfacing of peripherals (I / Os) and applications:** Interfacing Keyboard (linear and matrix) and 7 segment display including multiplexes, 8279 programmable keyboard/display interface, 8255 PPI, 825'9 PIC, DMA and 8257 DMA controller, Serial communication using 8251, D to A converters, A to D converters and interfacing, RS232 serial communication standards. (15 Hrs)

Text book:

- 1. R.S. Gaonkar 'Microprocessor Architecture, Programming and Application with 8085. Penram Int. 3rd Edn.
- 2. Brey B Brey, The Intel Microprocessor 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro. Processor, 6th Edition, Pearson Education.

References:

- 1. Douglas V. Hall-. Microprocessors and digital systems, MH.
- 2. Kenneth L. Short Microprocessor and Programmed Logic", PHI, 2nd Edn.
- 3. Aditya P. Mathur Introduction to Microprocessors, 3rd Edn. TMH Coverage in the Text Book: Architecture and Operation: Ch 1-1. 1-3; Ch 2-2.1.3; Ch3-3..1

Programming the 8085: Ch3, 3.21-25: CH 5, 5.1-5: Ch 6, 6.1-6; Ch 7, 7.1-5;

Ch 8,8.1-5; Ch 9, 9.1-4; Ch10, 10.1-8

Memory Interface: Ch 3.3; Ch 4.1-4;

Interrupts: Ch 12 - 12. 1 - 4

Interfacing of peripherals (I/os) and Applications:- Ch 14-14.1, 14.3;

Ch 15-15.1, 15.2, 15.4-6: Ch 16.4

- 4. Antonakos: Introduction to Intel family of Microprocessors Pearson Education
- 5. Hoffer: Modern Systems Analysis and Design Pearson Education
- 6. Kendall, System Analysis and Design

BCA - 406 : COMPUTER LAB 4.1 (Based on BCA 401 &BCA 404)

BCA 401 Design and Analysis of Algorithm:

Sample Programmes:

- 1. Write a Program to Sort N Numbers Using Merge Sort Technique.
- 2. Write a Program to Sort N Numbers Using Quick Sort Technique.
- 3. Write a Program to Sort N Numbers Using Selection Sort.
- 4. Write a Program to Find the Minimum and Maximum Number in a Set of N Numbers Using Divide & Conquer Method.
- 5. Write a Program to Illustrate the Knapsack Problem for N Objects with M Weights. Calculate the Feasible Solution with Profit.
- 6. Write a Program to Find the Feasible Solution for Job Sequencing with Deadlines.
- 7. Write a Program to Find the Minimum Spanning Tree for the Given Graph Using Prim's Algorithm.
- 8. Write a Program to Find the Minimum Spanning Tree for the Given Graph Using Kruskal's Algorithm.
- 9. Write a Program to Find the Optimal Merge Pattern for the Given Files. Also Calculate the Weighted External Path Length.
- 10. Write a Program to Find the Shortest Path from the Specified Vertex to all other Vertices (Single Source Shortest Path Algorithm).
- 11. Write a Program to Find the Shortest Path from Each Vertex to all other Vertices (All Pair Shortest Path Algorithm).
- 12. Write a Program for N-Queens Problem. (The Output Should be in the fonn of Checker Board).
- 13. Write a Program for Multistage Graph, i. Using forward Approach.
 - ii. Using Backward Approach.
- 14. Write a Program for Optimal Binary Search Tree.

BCA - 404 : COMPUTER GRAPHICS :

- 1. Program to generate a line
- 2. Program to draw a circle
- 3. Program to print Line, Circle, Rectangle, Ellipse, Sector, Polygon
- 4. Program to draw line using DDA line drawing algorithm
- 5. Program to draw a circle using DDA circle drawing algorithm
- 6. Program to draw a line using Bresenhams line drawing algorithm
- 7. Program to draw a circle using Bresenhams circle drawing algorithm
- 8. Program to implement Transformations (TRANSLATE, ROTATE, SCALING) on object
- 9. Program for Reflection X axis
- 10. Program for Reflection Y axis
- 11. Program to implement window to view port

BCA 407: COMPUTER LAB 4.2 (Based on BCA 406)

BCA 403 System Programming:

(LEX PROGRAMS):

- 1. Program to count the number of vowels and consonants in a given string.
- 2. Program to count number of characters, words, spaces, end of lines in a given input file.
- 3. Program to count no. of:
 - a) +ve and -ve integers
 - b) +ve and -ve fractions
- 4. Program to count no. of comment line in a given C program. Also eliminate them and copy that program into separate file.
- 5. Program to count the no. of 'scanf' and 'printf' statements in a C program.
- 6. Program to recognize a valid arithmetic expression and identify the identifiers and operators present. Print them separately.
- 7. Program to recognize whether a given sentence is simple or compound.
- 8. Program to recognize and count the number of identifiers in a given input file.

YACC PROGRAMMES:

- 9. Program to test the validity of a simple expression involving operators +,-,* and /
- 10. Program to recognize nested IF control statements and display the levels of nesting.

BCA 405 Microprocessor:

List of Experiments:

- 1. a) Addition & Subtraction of two 8-bit HEX numbers.
 - b) Addition of two 16-bit numbers.
- 2. a) Subtraction of two 16-bit numbers.
 - b) Two n-byte Number addition.
- 3. a) Block Transfer.
 - b) Block Transfer in reverse order.
- 4. a) 4-Digit BCD addition.
 - b) 2's Complement of 8 & 16 bit number.
- 5. a) Subtraction of 16-bit number
 - b) Block Exchange
- 6. a) Implementation of Full Adder
 - b) Largest & smallest number in an Array
- 7. a) Exchange of Blocks in reverse order
 - b) Sorting of array in ascending order
- 8. a) Counting of +ve, -ve &Zeros
 - b) Multiplication by successive addition.
- 9. a) Evaluate expression (A+B)*(C+D)
 - b) Division by successive subtraction.
- 10. a) Conversion of HEX to ASCII
 - b) Conversion of ASCII to Hex

COMMUNICATIVE ENGLISH (U G LEVEL)

Teaching hours: 5 Hrs/week

I) Phonetics

- 1) Sound Symbols
- 2) Word accent
- 3) Transcription of words
- 4) Intonation

II) Grammar

- 1) Importance of Inversion in English
- 2) One-word Substitutes
- 3) Transformation from Passive voice to Active voice
- 4) Transformation from Indirect to Direct speech
- 5) Question Tags

III) Writing Skills

- 1) Job-Application writing
- 2) Comprehension

IV) Speaking Skills

- 1) Greeting, Making requests, agreeing to and refusing requests & thanking
- 2) Self Introduction
- 3) Extending invitation and accepting / refusing invitations

Books Recommended

- 1) Spoken English: By R.K. Bansal and J.B. Harrison (Orient Langman, Bangalore)
- 2) A Remedial Grammar of English: By F.T. Wood (Macmillan, Madras)
- 3) English Pronouncing Dictionary By Daniel Jones (Cambridge, Mumbai)

Communicative English Question Paper Patterns

The course is of 100 marks

Theory – 80 marks Internal Assessment : 20 marks

a) Oral Test 10b) Class Test 10

Q.No. I	
a) Mark the stress	
b) Transcribe the given words	
c) Mark the intonation	
Q.No. II	
1) Transformation into Negative Sentences, Correction of Errors in word order	5
2) Question tags	2
3) One word substitutes	5
4) Transformation form Passive to Active	5
5) Transformation from speech into Direst speech	5
Q.No. III	
a) Job Application writing	10
b) Read the given passage and answer the questions set on it	2X5 =10
Q.No. IV	
By Contextualising, questions would be asked to	
1) a) Greet	
b) Make requests, agree to / refuse requests and	6
c) Thank	
2) Introduce oneself	8
3) Extend invitations and refuse / accept invitations	6

BCA - FIFTH SEMESTER

BCA 501: COMPUTER NETWORKS

Total: 50 Hrs

- **1. Introduction**: Computer networks and its applications, Network structure, network architecture, Topologies, LAN VAN MAN, The OSI reference model, The TCP /IP reference model, Services, network standards, example networks. All cables, AM, DM, PC Modulation, Bridges. (4 Hrs)
- **2. The Physical layer**: Transmission and Switching, Frequency and time division multiplexing, Circuit switching, packet switching, hybrid switching, ISDN integrated services digital networks, ISDN service, Evolution of ISDN, ISDN system architecture, the digital PBX, ISDN interface, ISDN signaling, Perspective on ISDN, Terminal handling, Polling Multiplexing versus concentration. (10 Hrs)
- **3. The medium access sub layer**: The local metropolitan area networks, the ALOHA protocols, LAN protocols: Carrier Sense multiple access protocols, collision free protocols Limited Contension protocols. (10 Hrs)
- **4. The data link Layer**: Data link Layer design issues, Error detection and correction, Elementary data link protocols, sliding window protocols, protocol performance, Protocol specification and verifications. (10 Hrs)
- **5. The Network Layer**: Network layer design issue, Routine algorithms: Optimality principle shortest path routing Flooding Flow based routing, Hierarchical routing, Broadcast Routing, Multicast Routing, Congestion control algorithms, Internet working Network layer in the internet and ATM Networks. **(8 Hrs)**
- **6. The Transport Layer**: Transport service, Transport protocols, Internet transport protocol (TCP & UDP). (8 Hrs)

Text Books:

1. Andrew S Tenebaum, Computer Networks, Fourth Edition, Pearson Pub. 2002.

- 1. Ulyses Black, Computer Networks: Protocols, standard and interfaces, PHI.
- 2. James Martin, Local area networks: Architecture and implementation, PHI.
- 3. Behrous Foruzan, Data Communication and Networking. TMH.
- 4. W. Stallings, Data and Computer Communications, Pearson Education.
- 5. Prakash Gupta, Data Communications, PHI.
- 6. James. F. Kurose & Keith W Ross, Computer Networking A TOP DOWN Approach Featuring the Internet, 2nd Edition, Pearson Education.

BCA 502: INTERNET PROGRAMMING

Total: 50 Hrs

- **1. Introduction:** Internet origin and development internet architecture frame work world Wide Web.
- 2. Introduction to JAVA: JAVA Evolution: Java History, Java Features, How Java Differs from C and C++, Java and Internet, Java and World Wide Web, Web Browsers, Hardware and Software requirements, Java Support Systems, Java Environment. Overview of JAVA Language: Introduction, Simple Java Program, More of Java, An Application with Two Classes Java Program structure, Java Tokens, Java Statements, Implementing a Java Program, Java Virtual Machine, Command Line Arguments, Programming Style. Constants, Variables, and Data Types: Introduction, Constants, Variables, Data Types, Declaration of Variables, Giving Values to Variables, Scope of variables, Symbolic Constants, Type Casting, Getting Values of Variables, Standard Default Values, Operators and Expressions; Introduction, Arithmetic Operators, Relational Operators, Logical Operators, Assignment Operators, Increment and Decrement Operators, Conditional Operators, Bitwise Operators, Special Operators, Arithmetic Expressions, Evaluation of Expressions, Precedence of Arithmetic Operators, Type conversion and Associativity, Mathematical Functions. Decision Making and Branching: Introduction, Decision Making with if Statement, Simple if Statement, The if else Statement, Nesting of if else Statements, The else if Ladder, The Switch Statement, The ?: Operator. Decision Making and Looping: Introduction. The while Statement, The do Statement, The for Statement, Jumps in Loops Labeled Loops. (12 Hrs)
- **3.** Classes, Arrays, Strings and Vectors: Classes, Objects and Methods. Introduction, Defining a Class. Adding Variables, Adding Methods, Creating Objects, Accessing Class Members, Constructors, Methods Overloading, Static Members, Nesting of Methods, Inheritance: Extending a Class Overriding Methods, Final Variables and Methods, Finalizer methods, Abstract tv1ethods and Classes, Visibility Control. Arrays, Strings and Vectors: Arrays, One dimensional Arrays, Creating an Array, Two dimensional Arrays, Strings, Vectors, Wrapper Classes. (8 Hrs)
- 4. Interfaces, Packages, and Multithreaded Programming: Interfaces: Multiple Inheritance: Introduction, Defining Interfaces, Extending Interfaces, Implementing Interfaces, Accessing Interface Variables. Packages: Putting Classes together: Introduction, Java API Packages, Using System Packages, Naming Conventionals, Creating Packages, Accessing a Package, Using a Package, Adding a Class to a Package, Hiding Classes. Multithreaded Programming: Introduction, Creating Threads, Extending the Thread Class, Stopping and Blocking a thread, Life Cycle of a thread, Using Thread Methods, Thread Exceptions, Thread Priority, Synchronization, Implementing the 'Runnable' Interface. (10 Hrs)
- **5. Managing Exceptions, Applet Programming:** Managing Errors and Exception: Introduction, Types of Errors, Exceptions, Syntax of Exception Handling Code, Multiple Catch Statements, Using Finally Statement, Throwing Our Own Exceptions, Using Exceptions for Debugging. Applet Programming: Introduction, How Applets Differ from Applications, Preparing to Write Applets, Building Applet Code, Applet Life Cycle, Creating an Executable applet, Designing a Web Page, Applet Tag, Adding Applet to HTML File, running the Applet, More about Applet Tag, Passing Parameters to Applets, Aligning the Display, More About HTML Tags, Displaying Numerical Values, Getting Input from the User. (12 Hrs)
- **6. Graphics Programming, Input / Output:** Graphics Programming: Introduction, The Graphics Class, Lines and rectangles, circles, and Ellipses, Drawing Arcs, Drawing Polygons, Line Graphs, Using Control Loops in Applets, Drawing Bar Charts. managing Input / Output Files in JAVA:

Introduction, Concept of Streams, Stream Classes, Byte Stream Classes, Character Stream Classes, Using Streams, Other Useful I/O Classes, Using the File Class, Input/Output Exceptions, Creation of Files, Reading/Writing Characters, Reading/Writing Bytes, Handling Primitive Data Types, Concatenating and Buffering Files, Interactive Input and output, Other Stream Classes. (8 Hrs)

Text Books:

- 1) Shishir Gundavaram, CGI Programming on the World Wide Web, O'Reilly and Associates, (1996). (Chapter 1 7)
- 2) E. Balaguruswamy, Programming with JAVA, A Primer, 2nd Edition., TMH (1999), (Chapter 2 16)

- 1) Thomas Boutel, CGI programming in C and Perl, Addison Wesley, (1996).
- 2) Jefry Dwight et al, Using COI, (Second Edition), Prentice Hall, India, (1997).
- 3) Darrel Ince & Adam Freeman, Programming the Internet with Java, Addison Wesley, (1997).
- 4) KenArnold & Jan1es Gosling, The Java Programming Language, Addison Wesley, (1998)
- 5) Patrick Naughton & Herbert Schildt, JAVA 2: The Complete Reference, 3rd Edition, TMH, (1999).

BCA 503: DATABASE MANAGEMENT SYSTEMS

Total: 50 Hrs

- **1. Introduction**: Database and Database Users, Characteristics of the Database Approach, Different people behind DBMS, Implications of Database Approach, Advantages of using DBMS., When not to use a DBMS.

 (5 Hrs)
- **2. Database System Concepts and Architecture**: Data Models, Schemas, and Instances., DBMS Architecture and Data Independence., Database languages and interfaces., The Database system Environment, Classification of Database management Systems. (4 Hrs)
- **3. Data Modeling Using the Entity-Relationship Model**: High level Conceptual Data models for Database Design with an example., Entity types, Entity sets, Attributes, and Keys, ER Model Concepts, Notation for ER Diagrams, Proper naming of Schema Constructs, Relationship types of degree higher than two. (5 Hrs)
- **4. Record Storage and Primary File Organization**: Secondary Storage Devices. Buffering of Blocks., Placing file Records on Disk., Operations on Files, File of unordered Records (Heap files), Files of Ordered Records (Sorted files), hashing Techniques, Other Primary file Organization:

(6 Hrs)

5. Functional Dependencies and Normalization for Relational Database: Informal Design Guidelines for Relational Schemas, Functional Dependencies, Normal Forms Based on Primary Keys., General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form.

(4 Hrs)

- **6. Relational Data Model and Relational Algebra**: Relational Model Concepts, Relational Model Constraints and Relational Database Schema, Defining Relations, Update Operations on Relations, Basic Relational Algebra Operations. Additional Relational Operations, Examples of Queries in the Relational Algebra., Relational Database design Using ER to Relational Mapping. **(6 Hrs)**
- **7. Relational Database Language**: Data definition in SQL, Queries in SQL, Insert, Delete and Update Statements in SQL, Views in SQL, Specifying General Constraints as Assertions, Specifying indexes, Embedded SQL. (5 Hrs)
- **8. PL** / **SQL**: Introduction, Exceptions & Cursor Management, Database Triggers, Functions, Procedures and packages. (8 **Hrs**)
- **9. Transaction Processing Concepts**: Introduction, Transaction and System Concepts, Desirable properties of transaction, Schedules and Recoverability, Serializability of Schedules, Transaction Support in SQL, Locking Techniques for Concurrency Control, Concurrency Control based on time stamp ordering. Optimistic Concurrency control techniques, Using locks for Concurrency Control in Indexes.

 (7 Hrs)

Text book:

- 1. Elmasri & Navathe. Fundamentals of Database Syster.1s (Fourth Edition), Pearson Education, 2003.
- 2. Sundarraman, Oracle 9i programming A Primer, lie Pearson Education.

- 1. Kahate, Introduction to Database Management System, Pearson Education 2004.
- 2. Abrahamsi. Silberschatag, Henry. F. Korth, S. Sudarshan, Database System Concepts, Mc.Graw hill.
- 3. Jefry. D. Ullman. Principles of database system.
- 4. Oracle Press: ORACLE Computer reference
- 5. C.J. Date, Introduction to database systems, Sixth Edition, Addisonwesley, 1995.
- 6. Raghu Ram Krishnan, Database Management Systems. Second Edition,. Mc. Graw Hill, 2000.

BCA 504:S0FTWARE ENGINEERING

Total: 50 Hrs

- **1. Introduction**: Software Products and Software process, Process models: Waterfall model, Evolutionary Development. Bohemia's Spiral model, Overview of risk management, Process Visibility, Professional responsibility. (4 Hrs)
- **2. Computer based System Engineering**: Systems and their environment, System Procurement, System Engineering Process, System architecture modeling, human Factors, System reliability Engineering. (3 Hrs)
- **3. Requirements and Specification**: The requirement Engineering Process. The Software requirement document, Validation of Evolution of requirements; Viewpoint oriented & method based anal: 'sis, System contexts, Social 7 organizational factors, Data flow, Semantic, Object. models, Requirement definition, . Requirement Specification, Non functional requirement. (8 Hrs)
- **4. Software prototyping**: Prototyping in software process, Prototyping techniques, User interface prototyping. (2 Hrs)
- **5. Software Design**: Design Process, Design Strategies, Design Quality, System Structuring, Control models, Modular decomposition, Domain Specific architecture. (5 Hrs)
- **6. Object Oriented & function oriented design**: Objects, object Classes and inheritance, Object identification, An object oriented design example, Concurrent Objects, Data flow design, Structural decomposition, Detailed Design, A Comparison of design Strategies. (5 Hrs)
- **7. User interface design**: Design Principles, User System interaction, Information Presentation, User Guidance, Interface Evaluation. (3 Hrs)
- **8. Software Reliability and reusability**: Software reliability metrics. Software reliability Specification. Statistical testing, Reliability Growth modeling, Fault avoidance & tolerance, Exception handling & defensive programming, Software development with reuse, Software development for reuse, Generator based reuse, Application System Portability. **(8 Hrs)**
- **9. Software Verification and Validation**: The testing Process, Test Planning and Strategies, Black Box, Structural, interface testing, Program inspections, Mathematically based verification, Static analysis tools. Clean room software development. **(8 Hrs)**
- 10. Management Issues: Project management, Quality management, Software cost estimation,Software maintenance. (4 Hrs)

Text book:

1. Ian Sommerville, Software Engineering, 6th Edition, Pearson Publication Ltd. 2001

- 1. Roger Pressman, Software Engineering A practitioner's approach (Mc Grew Hill).
- 2. Carlo Ghejgietal, Fundamentals of Software- Engineering, Pearson Education.
- 3. Panakaj Jalote, An Integrated Approach to Software Engineering Narosa Publishing house.

BCA 505: OPERATIONS RESEARCH

Total: 50 Hrs

- **I. Linear Programming Problems**: Origin and development of operations research, Linear Programming Problem-formulation of Linear Programming problem, Graphical solution. Theory of simplex method. Use of artificial variables and their solution, Duality theory and Sensitivity Analysis.

 (20 Hrs)
- **II. Transportation Problem**: Mathematical formulation of transportation problem, Initial Basic Feasible solution, North West corner rule, Matrix minima method, Vogal approximation method, for balanced Transportation Problem only. (8 Hrs)
- **III. Assignment Problem**: Mathematical formulation of an Assignment problem, Assignment algorithm and simple illustrations. (8 Hrs)
- **IV. Network Analysis:** Basic components of Network, Rules for drawing Network diagram, Time calculation in Networks. Critical Path Method and Project Evaluation and Review Techniques. Algorithm and flow chart for CPM and PERT.. **(8 Hrs)**
- **V. Theory of Games**: Two person Zero sum Games, the maximin and Minimax principle, Saddle point and value of the Game. Game without saddle points, mixed strategies. Solution for 2 x 2 games, Graphical method Dominance property, Linear programming method their solutions. (6 Hrs)

Text books:

- 1. Taha: Operations Research, 7/e. Pearson Education.
- 2 Hamady A. Taha Operations Research, Collin Mac Millan 1982.
- 3 Kanti Swarup, P.K. Gupta and Man Mohan Operations Research, Sultan Chand and Sons, 4793/23, Darya Gani, New Delhi 110002.
- 4 Rardin, Optimization in Operations Research.

- 1. Billey E. Gillett, Introduction to Operations Research, Himalyal Publishing House, Delhi 1979.
- 2. Frederick S. Hiller, Gaxald, J. Deibermann, Operations Research, Holden Day Inc. 1974.
- 3. Narag. A.S., Linear Programming and Decision making, Sultan Chand and Sons, 4793/23, DaryaGanj, New Delhi 110002.

BCA - 506: COMPUTER LAB 5.1 (Based C 11 BCA 502)

Sample Programs:

- 1. Write a program to find factorial of list of Number reading input as command line argument.
- 2. Write a program to find prime series reading N as command line argument.
- 3. Write a program to sort list of elements in ascending and descending order and show the exception handling.
- 4. Write a program to implement Rhombus pattern reading the limit form user.
- 5. Write a program to implement all bitwise operations read the input form user and display input, output errors.
- 6. Write a program to implement all string operations.
- 7. Write a program to find area of geometrical figures using method.
- 8. Write a program to implement constructor overloading by passing different number of parameter of different types.
- 9. Write a program to create student report using applet, read the input using text boxes and display the o/p using buttons.
- 10. Write a program to calculate bonus for different departments using method overriding.
- 11. Write a program to implement an applet by passing parameter to HTML.
- 12. Write a program to implement thread priorities.
- 13. Write a program to implement thread, applets and graphics by implementing animation of ball moving.
- 14. Write a program to implement mouse events.
- 15. Write a program to implement keyboard events.

BCA - 507 : COMPUTER LAB 5.2 (Based On BCA 503)

Sample programs:

1. Consider the Insurance database given below'. The primary keys are underlined and the data types are specified.

PERSON (DRIVER - 10 #: string, name: string, address: strong)

CAR (Reano: string, model: string, year: int)

ACCIDENT (report - number: int, date: date, location: string)

O\VNS (driver ~ id #: string, Regno: string)

PARTICIPTATED (driver - id #: string, Regno: string, report - number: int, damage amount: int)

- i) Create the above tables by-properly speCifying the primary keys and the foreign keys.
- ii) Enter atleats -five tuples for each relation.
- iii) Demonstrate how you
 - a) Update the damage amount for the car with a specific Regno in the accident with report number 12 to 25000.
 - b) Add a new accident to the database.
- iv) Find the total number of people who owned cars that were involved in accidents in 2002.
- v) Find the number of accidents in which cars belonging to a specific model were involved.
- vi) Generation of suitable reports.
- vii) Create suitable front end for querying and displaying the results.
- 2. Consider the following relations for an order processing database application in a company.

CUSTOMER (Cust: int, Cname: string, city: string)

ORDER (Orderno: int, Odate: date, Cust: int, Order_amount: int)

ITEM (Item: int, Unit price: int)

ORDER_ITEM (Orderno: int, Odate: date, Cust: int, Item: int, Quantity: int)

WAREHOUSE (Warehouse : int, City : string)

SHIPMENT (Orderno: int, Warehouse: int, Ship_date: date)

- i) Create the above-tables by properly specifying the primary keys and the foreign keys.
- ii) Enter atleast five tupels for each relation.
- iii) Product a listing: CUSTNAME, #oforders, AVG ORDER AMT, where the middle column is the total average order amount for that customer.
- iv) List the order# for orders that were shipped from *all* the warehouses that the company has in a specific city.
- v) Demonstrate how the delete item# 10 from the ITEM table and make that field null in the ORDER ITEM table.
- vi) Generation of suitable reports.
- vii) Create suitable front end for querying and displaying the results.
- 3. Consider the following database of students enrollment in courses and books adopted for each course.

STUDENT (regno: string, name: string, major: string, bdate: date)

COURSE (course #: int, cname: string, dept: string)

ENROLL (regno: string, course#: int, sem: int, marks: int)

BOOK_ADOPTIO (course#: int, sem: int, book-ISBN: int)

TEXT (book -- ISBN: int~ book-title:string, publisher: string~ author: string)

- i) Create the above tables by properly specifying the.primary keys and the foreign keys.
- ii) Enter atleast five tuples for each relation

- iii) Demonstrate how you add a new text book to the database and make this book be adopted by some department.
- iv) Produce a list of text books (include Course #, Book ISNB, Book title) in the alphabetical order for courses offered by the 'CS' department that use more than two books.
- v) List any department that has all its adopted books published by a specific publisher.
- vi) Generation of suitable reports.
- vii) Create suitable front end for querying and displaying the results.
- 4. The following tables are maintained by a book dealer.

AUTHOR (author - id : int, name: string, city: string, country: string)

PUBLISHER (publisher - id: int, name: string, city: string, country: string) CATALOG (book - id: int, title:

string, author - id: int, publisher - id: int, categoryid,: int, year: int, price: int)

CA TEGOR Y (category - id: int, description: string)

ORDER - DETAILS (order - no: int, book - id: int, quantity: int)

- i) Create the above tables by properly specifying the primary keys and the foreign keys.
- ii) Enter atleast five tuples for each relation.
- iii) Give the details of the authors who have 2 or more books in the catalog and the price of the books is greater than the average price. of the books in the catalog and the year of publication is after 2000.
- iv) Find the author of the book which has maximum sales.
- v) Demonstrate how you increase the price of books published by a specific publisher by 10%.
- vi) Generation of suitable reports.
- vii) Create suitable front end for querying and displaying the results.
- 5. Consider the following database for a banking enterprise.

BRANCH (branch - name: string, branch - city: string, assets: real)

ACCOUNT (accno: int, branch - name: string, balance: real)

DEPOSITOR (customer - name: string, accno: int)

CUSTOMER (customer - name: string, customer - street: string, customer - city: string)

LOAN (loan - number: int, branch - name: string, amount: real)

BORROWER (customer - name: string, loan - number: int)

- i) Create the above tables by properly specifying the primary keys and the foreign keys.
- ii) Enter atleast five tuples for each relation.
- iii) Find all the customers who have atleast two accounts at the main br8:nch.
- iv) Find all the customer who have an account at all the branches located in a specific city.
- v) Demonstrate how you delete all account tuples at every branch located in a specific city.
- vi) Generation of suitable reports.
- vii) Create suitable front end for querying and displaying the results.

BCA - SIXTH SEMESTER

BCA 601: MOBILE COMPUTING

Total: 50 Hrs

- **1. Introduction**: Applications, History of Wireless communication, A simplified reference model. **(6 Hrs)**
- **2. Wireless Transmission**: Frequencies, Signals, Antennas, Signal propagation, multiplexing, modulation, Spread spectrum, Cellular systems. (6 Hrs)
- **3. Medium Access Control**: Motivation for a specialized MAC, SDMA, FDMA, TDMA, CDMA, Comparison of S/T/F/CDMA. (6 Hrs)
- **4. Satellite Systems**: Basics, Routers, Location, Handover, examples (6 Hrs)
- 5. Broadcast systems: Cyclic representation of data, Digital audio & video broadcasting. (6 Hrs)
- **6. Wireless LAN**: Infrared V/S Radio transmission, Infrastructures and ad hoc Networks, IEEE 802.11, Hiperlan, Bluetooth. (6 Hrs)
- **7. Wireless ATM**: Wireless ATM working group, WATM services, references model, Functions, radio access layer, Handover, Location Management, Addressing, Mobile quality of services, Access point control protocol. (7 Hrs)
- **8. Mobile Network Layer**: Mobile IP, Dynamic host configuration protocol, Ad hoc networks. Mobile Transport layer, Support for mobility and wireless application protocol. (7 Hrs)

Text books:

1) Schiller J.H. "Mobile Communications", Addison Wesley.

- 1. Stuber G.L., Principles of mobile Communications, Academic Press 1996.
- 2. *Rappapert T.S.*, Wireless Communication principles & Practices, Pentacle Hall, 1996.

BCA 602: E-COMMERCE & WEB DESIGNING

Total: 50 Hrs

- 1. Introduction: Electronic Commerce Environment and opportunities: Background. The electronic Commerce environment, Electronic marketplace technology. Modes of electronic commerce: Overview, Electronic Data Interchange (EDI), Migration to open EDI, e-commerce with Internet/WWW, Commerce Net advocacy, Web Commerce going Forward. Approaches to safe e-commerce: Overview, Secure Transport Protocols, Secure Transactions, Secure Electronic Payment Protocol, Secure Electronic Transaction, Certificates, for Authentication, Security on Web Servers and Enterprise Networks. (10 Hrs)
- 2. Payments and Security: Electronic Payment systems: Types, Digital Token-Based Electronic Payment Systems, Smart Cards and Electronic Payment Systems, Credit card-based Electronic Payment Systems, Risk and Electronic Payment Systems, Designing Electronic Payment Systems. Master Card Visa Secure Electronic Transactions: Introduction, Business Requirements, Concepts, Payment Processing email and Secure e-mail Technologies: Introduction, The means of Distribution. A Model for Message Handling. Working of e-mail. MIME, S/MIME: and MOSS, Comparisons of security methods, MIME and Related facilities for EDI over the Internet. (10 Hrs)
- **3. Applications I: Consumer-Oriented e-Commerce**: Applications. Mercantile Process Models, Mercantile Models from the Consumer's Perspective and from the Merchant's Perspective. Interorganizational Commerce and EDI: EDI, Applications of EDI in business, Legal, Security and Privacy Issues; EDI and e-commerce; Standardization and EDI. EDI Software Implementation, EDI Envelope for Message Transport, Value-added Networks, Internet Based EDI Intraorganizational e-commerce. **(8 Hrs)**
- **4. Applications II: Advertising and Marketing:** The New Age of Information Based Marketing, Advertising on the Internet, Charting the On-Line Marketing Process, Marketing Research. Consumer Search and Resource Discovery: Search and Resource Discovery Paradigms. Information Search and Retrieval, e-commerce Catalogs or Directories, Information Filtering, Consumer Data Interface: Emerging Tools. Electronic Publishing: EP and Web Based EP.**(7 Hrs)**
- **5. Web Design**: Web design, Web design Process, Designing for others, site types and architectures, Navigation Theory and practice, Linkage: Text, Buttons, Icons and Graphics, Search and 'design, site maps, Indexes, and navigational and use aids. (15 Hrs)

Text Books:

- 1. Deitel, Internet and World Wide Web How to Program, Pearson Education, Asia.
- 2. Daniel Minoli, Ernma Minoli, Web Commerce Technology Handbook, Tata McGraw Hill, (1998) (Chapter 1,2,3,6,7,11)
- 3. Ravi Kalakota, Andrew B. Whinston, Frontiers of Electronic Commerce, Addison Wesley, (1996), (Chpater 1,7,8,9,10,11,13,14)

- 1. Daniel Lynch and Leslie Lundquist, Digital Money: The New Era of Internet Commerce, John Wiley, (1996)
- 2. Laudon, E-Commerce, Pearson Education, Asia

BCA 603: INTRODUCTION TO UNIX

Total: 50 Hrs

- 1) Background and some Basic Commands: Brief history Salient features of UNIX system, POSIX and the Single UNIX Specification, The UNIX architecture, Locating commands, Internal and External Commands, Flexibility of Command Usage, man: Browsing and Manual Pages On line, Understanding the man Documentation.
- Cal: The Calendar, date: Displaying and system Date, echo: Displaying a message, printf: An alternative to echo, bc: The Calculator, Script: Recording your session, passwd: Changing your pass word, who: Who are the Users?, unamc: Knowing your Machine's Characteristics, tty: Knowing your Terminal, sty: Displaying and setting Terminal Characteristics.
- 2) The File System and some File Handling Commands: The File, What's in a (file) name? The Parent Child Relationship, The HOME Variable: The Home Directory, pwd: Checking your Current Directory, cd: Changing the Curf"'1t Directory, mkdir: Making Directories, rmdir: Removing Directories, Absolute 1 dthnames, Relative Pathnames, Is: Listing Directory continents, The UNIX File System. Cat: Displaying and Creating files, cp: Copying a File, rm: Deleting Files, mv: Renaming Files, more: Paging Output, The Ip Subsystem: Printing a File, file: Knowing the File Types, wc: Counting Lines, Words and Characters, od: Displaying Data in Octal, The spell and ispell, cmp: Comparing Two Files, comm.: What is Common?, diff: Convening One File to other, dis2unix: and unix2dos: Converting Between DOS and UNIX. Compressing Files, gzip, gunzip, and unzip commands.
- 3) File Attributes: Is I: Listing file Attributes, The d Option: Listing Directory Attributes, Listing inode number, listing hidden file, time associated with a file, listing timestamps. File ownership, File Permissions, changing File Permissions, Directory Permissions, changing File ownership. File Systems and Inodes, Hard Links, Symbolic Links and In, The Directory, umask: Default File and directory Permissions, Modification and Access Times, find: Locating Files.
- **4) The vi Editor**: vi Basic, Input Mode Entering and Replacing Text,. Saving Text and Quitting The ex Mode, Navigation, Editing Text, Undoing Last Editing Instructions, (u and U) Repeating the Last Command (.), Searching for a Pattern (I and ?), Substitution Search and Replace (:s), Customizing vi.
- **5) The Shell:** The Shell's Interpretive Cycle, Pattern Matching The Wild cards, Escaping and quoting, redirection: The three Standard Files, /dev/null and /dev/tty: Two Special Files, Pipers, **tee:** Creating a Tee, Command Substitution, Shell variables.
- **6) The Process**: Process Basics, **ps:** Process Status, System Processes (-e or-a), mechanism of Process Creation, Internal and External Commands, Running Jobs in Background, **nice:** Job Execution with Low Priority, Killing Processes with Signals, Job Control, fg and bg commands at and **batch:** Execute. Later, **cron:** Running Jobs Periodically, **time:** Timing Processes.
- 7) Communication In Unix: finger: Details of Users, mesg: Your Willingness to communicate write: communication alternately, talk: Online Communication, wall: writing on all terminals, news: knowledge the local events, Email Basics, The mail command.
- 8) Simple Filters and grep Family of Commands: The Sample Database, pr: Paginating Files, head: Displaying the Beginning of a File, tail: Displaying the End of a File, cut: Slitting a File Vertically, paste: pasting Files, sort: Ordering a file, uniq: Locate Repeated and Non repeated

Lines, **tr:** Translating Characters, An Example: Displaying a Word - count List. **Grep:** Searching for a Pattern, Basic Regular Expressions (BRE) - Ail Introduction, Extended Regular Expressions (ERE) and egrep.

Text Books:

1) Raymond, The Art of UNIX Programming, Pearson Education, Asia.

- 1) Glass: Unix for Programmers and Users, 3/e Pearson Education
- 2) Kernighan: The Unix Programming Environment
- 3) Kochan: Unix Shell Programming Pearson
- 4) Venkateshmurthy, Introduction to Unix and Shell Programming, Pearson Education.

BCA 604: OBJECT ORIENTED SYSTEM DESIGN

Total: 50 Hrs

Introduction: An overview of Object oriented Systems Development; why and Object Orientation?, Overview of the Unified Approach. Object Basics: Introduction, An Object Oriented Philosophy, Objects, Classes, Attributes; Object Behavior and methods, Encapsulation and Information Hiding, Class Hierarchy, Polymorphism, Object Relationships, and Associations, Aggregations and Object Containment, Case Study: A payroll program, Advanced Topics. Object-Oriented Systems Development Life Cycle: Introduction. The software Development Process, Building High Quality software, Object-Oriented Systems Development: A Use Case Driven Approach Reusability. (6 Hrs)

Methodology modeling And Uml: Object Oriented Methodology: Introduction: Survey of Some of the Object-Oriented Methodologies, Rumbaugh et al's. Object Modeling Technique, The Booch Methodology, The Jacboson et al, methodologies, Patterns. Frameworks, The Unifted Approach, Unified Modeling Language: Introduction, Static and Dynamic Models, Why Modeling, Introduction to the Unified Modeling Language, UML Diagrams, UML class Diagram, Use -Case Diagram, UML Dynamic modeling, Model Management: packages and Model Organization, UML, extensibility, UML Meta- Model. (8 Hrs)

Object Oriented Analysis: Object Oriented Analysis Process- Identifying Use Cases: Introduction, Business Object Analysis: Understanding the Business Layer, Use-Case Driven Object- Oriented Analysis: the Unified Approach, Business Process Modelling, Use - Case Model, Developing Effective Documentation. Case Study: ViaNet Bank A TM, Object Analysis- Classification: introduction, Classification TIL AY, approaches for Identifying Classes, Noun Phrase Approach, Common Class Patterns Approach, Use Case Driven Approach Identifying Classes and Their Behaviours through Sequence / Collaboration Modeling, Classes, Responsibilities and Collaborators, Naming Classes, Identifying Object Relationships, Attributes, and Methods: Introduction, associations, Super-Sub Class Relationships, A-part-of Relationships-Aggregations, Case study, Class Responsibility: Defining Attributes by analyzing Use Case and other UML Diagrams, Defining Attributes for ViaNet Bank objects, Object Responsibility: Methods and messages, Defining Methods for ViaNet Bank Objects. (12 Hrs)

Object Oriented Design: The Object- Oriented Design process and Design Axioms: Introduction, The Object Oriented Design Process, Object Oriented Design Axioms, Corollaries, Design patterns, Designing Classes: Introduction, The Object-Oriented Design Philosophy, UML Object Constraint Language, Designing Classes: The Process, Class Visibility; Designing Well-Defined Public, Private and Protected protocols, Designing Classes: Refining Attributes, Refining attributes for the ViaNet Dank Objects, Designing Methods and Protocols, Designing Methods for the ViaNet Bank Objects, Packages and managing Classes, access Layer-Object Storage and object. Interoperability: Introduction, Object Store; and Persistence: Database Management systems, Organization and Access Control, Distribution 'Databases and Client - Server Computing, Distributed Objects computing, Object Oriented Database Management Systems, Object-Relational Systems, Multidatabase Systems, Designing Access Layer Classes, Case Study; Designing the Access Layer for the ViaNet Bank ATM, View Layer designing Interface Objects: View Layer Classes, M3cro-Level Process; Identifying View Classes by Analyzing Use Cases, Microlevel Process, The Purpose of a View Layer Interface, Prototyping the User Interface, Case Study. (12 Hrs)

Designing With Patterns: GRASP Patterns for assigning Responsibilities: introduction, Activities and Dependencies, Well-Designed Interaction Diagrams are Valuable, Responsibilities and Methods, Responsibilities and Interaction Diagrams, patterns, GRASP: patterns of General Principles in Assigning Responsibilities, The UML Class Diagram Notation, Expert Creator, Low Coupling, High Cohension, Controller, Responsibilities, Role Playing and CRC cards, More patterns

and Designing with Patterns: GRASP: general Responsibility Assignment software Pattern polomorphism, pure Fabrication, indirection, Don't Talk to Strangers, State(GoF) polymorphisom (GRASP) singleton(Gof) Command(Gof) Development process Issues: Introduction, Why? Guiding Principles of a Successful Process, Interactive and Incremental Development, Use Case Driven Development, Early emphasis on Architecture, Phases of Development, Length of Development Cycles, Development Cycles issues, Scheduling Development architecture layers. (12 Hrs)

Text books:

- I. Ali Bahrami: Object Oriented Systems Development, McGraw hi11.1999.
- 2. Criag Larman: Applying UML and Patterns, an Introduction to Object –Oriented Analysis and Design. Pearson Education 1998(Chapters 18,34,35,37)

- 1. Booch: Object Oriented Analysis and Design Pearson Education .
- 2. Rebecca Wirfs-Brock et al: Designing Object-Oriented software, Prentice-Hall India 1990
- 3. Grady Booch: Unified modeling Language User Guide, Pearson Education,
- 4. Gamma: Design patterns: Elements of Reusable Object Oriented Software, Pearson Education
- 5. Shalloway: Design Patterns Explained Pearson Education
- 6. Martin. J. and Odell, J: object oriented methods: a Foundation, Prentice Hall, 1995.

BCA 605: DOT NET TECHNOLOGY

- **1. Introduction to Computers, Internet and Visual Basic, Net:** Introduction, Visual Basic Net, C, C++ Java TM and C#, Other High Level Languages, structured Programming, Key Software Trend: Object Technology, Hardware Trends, History of the Internet and World Wide Web, World Wide Web Consortium (W3C), Extensible Markup Languages (XTML), Introduction to Microsoft, Net, Net Framework and the Common Languages Runtime, Tour of the Book Internet and World Wide Resources, Overview of the Visual Studio. Net IDE, Menu Bar and Toolbar, Visual Studio. Net IDE Windows (a) Solutions Explorer (b) Toolbox (c) Properties windows, Using Held, Simple Programme: Displaying Text and an Image, Internet and World Web Resources.
- **2. Control structures**: Introduction, Algorithms Psesudocode, Control Structures, If/The/Selection Structure, If/The/Else Selection Structure, While Repetition Structure, Do while/Loop Repetition Structure, Do/Until/Loop Repetition Structure, Assignment Operators, Formulating Algorithms: Case Study 1 (Counter-Controlled Repetitions), formulating Algorithms with Top Down, Stepwise Refinement: Case Study 2 (Sentinel-Controlled Repetition), Formulating Algorithms with Top-Down, Stepwise Refinement: Case Study 3 (Nested Control Repetition), Formulating Algorithms with Top-Down, Stepwise Refinement: Case Study 4 (Nested Control Repetition), Introduction to Windows Application Programming, Essentials of Counter-controlled Repetition, For/Next Structure, Examples Using the For/Next Structure, Select Case Multiple Selection Structure, Do/Loop While Repetition Structure, Do/Until While Repetition Structure, Using the Exit Keyword in a Repetition Structure, Logical Operators, Structured Programme Summary.
- **3. Procedures**: Introduction, Module, Classes and Procedures, Sub Procedures, Function Procedures, Methods, Argument Promotion, Option Strict and Data-Type Conversions, Value Types and Reference Types, Passing Arguments: Pass by Value vs. Pass by Reference, Duration of Identifiers, Scope Rules, Random-Number Generation, Example: Game of Chance, Recursion, Example Using Recursion: Fibonacci Series, Recursion vs. Integration, Procedure Overloading and Optional Argument (a) Procedure Overloading (b) Optional Arguments, Modules.
- **4. Arrays**: Introduction, Arrays, Declaring and Allocating Arrays, Example Using Arrays (a) Allocating an Array (b) Initializing the Values in an Array (c) Summing the Elements of an Array (d) Using Arrays to Analyze Survey Results (e) Using Histograms to Display Array Data Graphically, Passing Arrays to Procedures, Passing Arrays: ByVal vs. ByRef, Sorting Arrays Searching Arrays: Linear Search and Binary Search, (a) Searching an Array with Linear Search (b) Searching a Sorted Array with Binary Search, Multidimensional Rectangular and Jagged Arrays, Variable-Length Parameter Lists, For Each/Next Repetition Structure.
- 5. Object-Based Programming: Introduction, Implementing a Time Abstract Data Type with a Class, Class Scope Controlling Access to Members, initializing Class Objects: Constructors Using Overloaded Constructors, Properties, Composition, Object as Instance Variable of Other Classes, Using the MeReference, Garbage Collection, Shared Class Members, Const and Read only members, Data Abstraction and Information Hiding, Software Reusability, Namespaces and Assemblies, Class View and Object Browser, Inheritance: Introduction, Base Classes and Derived Classes, Protected and Friend Members, Relationship between Base Classes and Derived Classes, Case Study: Three-Level Inheritance Hierarchy, Constructions and Finalizers in Derived Classes, Software Engineering with Inheritance. Derived-Class-Object to Base-Class-Object Conversion, Type fields and Select Case Statements, Polymorphism Examples, Abstract Classes and Methods, Case Study, Inherting Interface and Implementation, Not Inheritable Classes and Notoverridable Methods, Case Study: Payroll System Using Polymorphism, Case Study: Creating and Using Interface, Delegates.
- **6. Exception Handling**: Introduction, Exception Handling Overview, Example DivideByZeroException, Net Exception Hierarchy, Finally Block, Exception Properties

Programming-Defined Exception Classes, Handling Overflows.

- **7. Graphical Users Interface Concepts**: Introduction, Windows Forms, Events Handling Model, Control Properties and Layout, labels Text Boxes and Buttons, Group Boxes and Radio Buttons, Picture Boxes, Mouse-Event Handling, Keyboard-Event Handling, Menus, Link Labels List Boxes and Check List Boxes (a) List Boxes (b0 Checked List Boxes, Combo Boxes, Tree Views, Tab Control, Multiple-Document-Interface (MDI) Windows, Visual Inheritance, User Defined controls.
- **8. Multithreading**: Introduction, Thread States: Life Cycle of a Thread, Thread Priorities and Thread Scheduling, Thread Synchronization and Class Monitor, Procedure/Consumer Relationship without Thread Synchronization, Procedure/Consumer Relationship: Circular Buffer.

Text Books

1. H. M. Deitel, P. J. Dietel and T. R. Nieto "Visual Basic.NET" Pearson Education 5/e, 2004.

- 1. More Visual Basic.NET is 21 days by Lowell Mauer.
- 2. Object Oriented Programming in Visual Basic.NET by Alistair Mcmonnies.
- 3. Visual Basic.NET programming by Harold Davis.
- 4. Object Oriented Programmign with Visual Basic.NET by Michael McMillan.
- 5. Visual Basic.NET by Shirish Chavan.

BCA 606: PROJECT WORK RCA 606 Computer Lab: Project work

Each student shall carry out a project work on computer applications under the supervision of a Guide in the Department and submit project report duly certified by the Guide and Head of the Institution/Department for the evaluation by the University. The student shall give two seminars pertaining to her project work for the purpose of internal assessment.

BCA 607 Viva-voce (Project work)

The student shall appear for the viva-voce on the project work conducted by the two practical examiners.